Влияние лазерного легирования порошковыми смесями Cu–Zn–Ti и Si–Cu на структуру и свойства литейного алюминиевого сплава

Обложка

Цитировать

Полный текст

Аннотация

Введение. Использование технологий лазерного модифицирования является актуальным и перспективным способом повышения свойств поверхности алюминиевых сплавов. Большой интерес вызывает лазерное легирование алюминиевых сплавов, которое способствует повышению их коррозионной стойкости, механических свойств и износостойкости в условиях адгезионного и абразивного изнашивания. Цель работы: исследование возможности повышения физико-механических свойств литейного алюминиевого сплава АК7ч путем лазерного легирования порошковыми смесями Cu–Zn–Ti (смесь № 1) и Si–Cu (смесь № 2), нанесенными на поверхность образцов в виде обмазок. Лазерное легирование поверхности образцов проводили на СО2-лазере непрерывного действия c длиной волны излучения λ = 10,6 мкм. Методы исследования. Оптическая и сканирующая электронная микроскопия, энергодисперсионный микроанализ, рентгеноструктурный фазовый анализ, измерение микротвердости, инструментированное микроиндентирование, испытания на абразивную износостойкость и разгаростойкость. Результаты и обсуждение. Установлено, что в результате лазерного легирования на поверхности образцов сплава АК7ч формируются легированные слои глубиной h = 3,5…4,0 мм. Легированные слои имеют дендритно-ячеистую структуру, основными структурными составляющими которой являются твердый раствор α–Al и сетка эвтектических кристаллов кремния по границам дендритных ячеек. В структуре легированных слоев также присутствует интерметаллид CuAl2 с размером частиц 1…5 мкм. Лазерное легирование повышает микротвердость сплава АК7ч от 90 до 125 HV 0,025 при легировании смесью № 1 и до 100 HV0,025 при легировании смесью № 2. По данным микроиндентирования легированные слои характеризуются повышеннным сопротивлением упругопластическому деформированию, о чем свидетельствует рост параметров Rе в 1,2…1,38 раза, HIT/E* в 1,33…1,67 раза и DrawAspect="Content" ObjectID="_1637050762">  в 2,14…3,71 раза. Испытания на износостойкость в условиях абразивного изнашивания показали, что лазерное легирование приводит к некоторому росту интенсивности изнашивания Ih (снижению износостойкости) алюминиевого сплава АК7ч от (1,49 ± 0,09) × 10−3 до (1,82 ± 0,06) × 10−3 при легировании смесями № 1 и 2. Однако лазерное легирование сплава АК7ч приводит к повышению его разгаростойкости, что выражается в уменьшении количества и размеров термических трещин.

Об авторах

Р. А. Саврай

Email: ras@imach.uran.ru
канд. техн. наук, Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия, ras@imach.uran.ru

И. Ю. Малыгина

Email: malygina@imach.uran.ru
канд. техн. наук, Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия, malygina@imach.uran.ru

А. В. Макаров

Email: avm@imp.uran.ru
доктор технических наук, 1. Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия; 2. Институт физики металлов им. М.Н. Михеева УрО РАН, ул. С. Ковалевской, 18, г. Екатеринбург, 620108, Россия; 3. Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, ул. Мира, 19, г. Екатеринбург, 620002, Россия, avm@imp.uran.ru

А. Л. Осинцева

Email: osintseva@imach.uran.ru
канд. техн. наук, Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия, osintseva@imach.uran.ru

С. А. Роговая

Email: rogovaya@imach.uran.ru
Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия, rogovaya@imach.uran.ru

Ю. М. Колобылин

Email: uramk@mail.ru
Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия, uramk@mail.ru

Список литературы

  1. Голышев А.А., Маликов А.Г., Оришич А.М. Исследование микроструктуры высокопрочных лазерных сварных соединений алюминиево-литиевых сплавов авиационного назначения // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 2. – С. 50–62. – doi: 10.17212/1994-6309-2018-20.2-50-62.
  2. Мартюшев Н.В., Зыкова А.П., Башев В.С. Модифицирование сплава марки АК12 частицами ультрадисперсного порошка вольфрама // Обработка металлов (технология, оборудование, инструменты). – 2017. – № 3 (76). – С. 51–58. – doi: 10.17212/1994-6309-2017-3-51-58.
  3. Об участии водорода в формировании свойств заэвтектических сплавов Al–Si / В.К. Афанасьев, М.В. Попова, М.А. Малюх, С.В. Долгова // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 2. – С. 63–74. – doi: 10.17212/1994-6309-2018-20.2-63-74.
  4. Криштал М.М., Ивашин П.В., Коломиец П.В. Использование технологии микродугового оксидирования при разработке ДВС с блоком цилиндров из алюминиевого сплава // Известия Самарского научного центра Российской академии наук. – 2010. – Т. 12, № 4. – С. 242–246.
  5. Андрияхин В.М. Процессы лазерной сварки и термообработки. – М.: Наука, 1988. – 176 с. – ISBN 5-02-005979-X.
  6. Григорьянц А.Г., Смирнова Н.А. Упрочнение поверхности стали 45 и литейного алюминиевого сплава АК9 излучением волоконного лазера // Технология машиностроения. – 2011. – № 11. – С. 52–56.
  7. Design of local heat treatment for crack retardation in aluminium alloys / A. Groth, M. Horstmann, N. Kashaev, N. Huber // Procedia Engineering. – 2015. – Vol. 114. – P. 271–276. – doi: 10.1016/j.proeng.2015.08.068.
  8. Смирнова Н.А. Лазерное модифицирование поверхности алюминиевых сплавов // Технология машиностроения. – 2016. – № 2. – С. 9–18.
  9. Modification of microstructure and superficial properties of A356 and A356/10%SiCp by selective laser surface melting (SLSM) / L.M. Laorden, P. Rodrigo, B. Torres, J. Rams // Surface and Coatings Technology. – 2017. – Vol. 309. – P. 1001–1009. – doi: 10.1016/j.surfcoat.2016.10.046.
  10. Effect of the composition of absorbing coatings on the structure and properties of a cast aluminum alloy subjected to surface laser heat treatment / R.A. Savrai, I.Yu. Malygina, A.V. Makarov, A.L. Osintseva, S.A. Rogovaya, N.A. Davydova // Diagnostics, Resource and Mechanics of materials and structures. – 2018. – Iss. 5. – P. 86–105. – doi: 10.17804/2410-9908.2018.5.086-105.
  11. Surface modification of Al–Al2O3 composites by laser treatment / V. Cannillo, A. Sola, M. Barletta, A. Gisario // Optics and Lasers in Engineering. – 2010. – Vol. 48, iss. 12. – P. 1266–1277. – doi: 10.1016/j.optlaseng.2010.06.004.
  12. Shabel B.S., Granger D.A., Truckner W.G. Friction and wear of aluminum-silicon alloys // ASM Handbook / ed. by P.J. Blau. – Materials Park: ASM International, 1992. – Vol. 18: Friction, lubrication, and wear technology. – P. 785–794.
  13. Effect of laser parameters on properties of surface-alloyed Al substrate with Ni / S.A. Vaziri, H.R. Shahverdi, M.J. Torkamany, S.G. Shabestari // Optics and Lasers in Engineering. – 2009. – Vol. 47, iss. 9. – P. 971–975. – doi: 10.1016/j.optlaseng.2009.04.007.
  14. Dilution of molybdenum on aluminum during laser surface alloying / H.D. Vora, R.S. Rajamure, S. Soundarapandian, S.G. Srinivasan, N.B. Dahotre // Journal of Alloys and Compounds. – 2013. – Vol. 570. – P. 133–143. – doi: 10.1016/j.jallcom.2013.03.115.
  15. Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance / R.S. Rajamure, H.D. Vora, S.G. Srinivasan, N.B. Dahotre // Applied Surface Science. – 2015. – Vol. 328. – P. 205–214. – doi: 10.1016/j.apsusc.2014.12.037.
  16. Laser surface alloying of molybdenum on aluminum for enhanced wear resistance / R.S. Rajamure, H.D. Vora, N. Gupta, S. Karewar, S.G. Srinivasan, N.B. Dahotre // Surface and Coatings Technology. – 2014. – Vol. 258. – P. 337–342. – doi: 10.1016/j.surfcoat.2014.08.074.
  17. Mabhali L.A.B., Sacks N., Pityana S. Three body abrasion of laser surface alloyed aluminium AA1200 // Wear. – 2012. – Vol. 290–291. – P. 1–9. – doi: 10.1016/j.wear.2012.05.034.
  18. Ravnikar D., Dahotre N.B., Grum J. Laser coating of aluminum alloy EN AW 6082-T651 with TiB2 and TiC: microstructure and mechanical properties // Applied Surface Science. – 2013. – Vol. 282. – P. 914–922. – doi: 10.1016/j.apsusc.2013.06.089.
  19. Nath S., Pityana S., Majumdar J.D. Laser surface alloying of aluminium with WC + Co + NiCr for improved wear resistance // Surface and Coatings Technology. – 2012. – Vol. 206, iss. 15. – P. 3333–3341. – doi: 10.1016/j.surfcoat.2012.01.038.
  20. Laser processed TiC–Al13Fe4 composite layer formation on Al–Si alloy / A. Viswanathan, D. Sastikumar, H. Kumar, A.K. Nath // Optics and Lasers in Engineering. – 2012. – Vol. 50, iss. 9. – P. 1321–1329. – doi: 10.1016/j.optlaseng.2012.02.013.
  21. D'Amato C., Betts J.C., Buhagiar J. Laser surface alloying of an A356 aluminium alloy using nickel and Ni-Ti-C: a corrosion study // Surface and Coatings Technology. – 2014. – Vol. 244. – P. 194–202. – doi: 10.1016/j.surfcoat.2014.02.018.
  22. Смирнова Н.А. Лазерное легирование поверхности алюминиевых сплавов // Наукоемкие технологии в машиностроении. – 2014. – № 3 (33). – С. 28–36.
  23. Effect of alloying on high temperature fatigue performance of ZL114A (Al-7Si) alloy / X. Dong, J. Zhou, Y. Jia, B. Liu // Transactions of Nonferrous Metals Society of China. – 2012. – Vol. 22, iss. 3. – P. S661–S667. – doi: 10.1016/S1003-6326(12)61782-8.
  24. Blum R., Molian P. CO2 laser coating of nanodiamond on aluminum using an annular beam // Applied Surface Science. – 2014. – Vol. 288. – P. 1–8. – doi: 10.1016/j.apsusc.2013.04.162.
  25. D'Amato C., Buhagiar J., Betts J.C. Tribological characteristics of an A356 aluminium alloy laser surface alloyed with nickel and Ni–Ti–C // Applied Surface Science. – 2014. – Vol. 313. – P. 720–729. – doi: 10.1016/j.apsusc.2014.06.061.
  26. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers / W. Pakiela, T. Tanski, Z. Brytan, K. Labisz // Applied Physics A: Materials Science and Processing. – 2016. – Vol. 122, iss. 352. – P. 1–9. – doi: 10.1007/s00339-016-9834-z.
  27. Алиева С.Г., Альтман М.Б., Амбарцумян С.М. Промышленные алюминиевые сплавы: справочник / под. ред. Ф.И. Квасова, И.Н. Фридляндера. – 2-е изд., перераб. и доп. – М.: Металлургия, 1984. – 528 с.
  28. Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment / R.A. Savrai, A.V. Makarov, I.Yu. Malygina, S.A. Rogovaya, A.L. Osintseva // Diagnostics, Resource and Mechanics of materials and structures. – 2017. – Iss. 5. – P. 43–62. – doi: 10.17804/2410-9908.2017.5.043-062.
  29. ISO 14577-1:2015. Metallic materials. Instrumented indentation test for hardness and materials parameters. Pt. 1: Test method. – Geneva: ISO, 2015. – 46 p.
  30. Cheng Y.T., Cheng C.M. Relationships between hardness, elastic modulus and the work of indentation // Applied Physics Letters. – 1998. – Vol. 73, iss. 5. – P. 614–618. – doi: 10.1063/1.121873.
  31. Page T.F., Hainsworth S.V. Using nanoindentation techniques for the characterization of coated systems: a critique // Surface and Coatings Technology. – 1993. – Vol. 61, iss. 1–3. – P. 201–208. – doi: 10.1016/0257-8972(93)90226-E.
  32. Petrzhik M.I., Levashov E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing // Crystallography Reports. – 2007. – Vol. 52, iss. 6. – P. 966–974. – doi: 10.1134/S1063774507060065.
  33. Mayrhofer P.H., Mitterer C., Musil J. Structure-property relationships in single- and dual-phase nanocrystalline hard coatings // Surface and Coatings Technology. – 2003. – Vol. 174–175. – P. 725–731. – doi: 10.1016/S0257-8972(03)00576-0.
  34. Крагельский И.В., Добычин М.Н., Комбалов В.С. Основы расчетов на трение и износ. – М.: Машиностроение, 1977. – 526 с.
  35. Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part I: Microstructure and surface properties / R.A. Savrai, A.V. Makarov, I.Yu. Malygina, E.G. Volkova // Materials Science and Engineering: A. – 2018. – Vol. 734. – P. 506–512. – doi: 10.1016/j.msea.2018.07.099.
  36. Savrai R.A., Makarov A.V. Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: Mechanical properties // Materials Science and Engineering: A. – 2018. – Vol. 734. – P. 513–518. – doi: 10.1016/j.msea.2018.07.100.
  37. Саврай Р.А. Сопротивление разрушению наплавленных лазером хромоникелевых покрытий при контактно-усталостном нагружении // Физика металлов и металловедение. – 2018. – Т. 119, № 10. – С. 1070–1078. – doi: 10.1134/S001532301810011X.
  38. Формирование износостойкого хромоникелевого покрытия с особо высоким уровнем теплостойкости комбинированной лазерно-термической обработкой / А.В. Макаров, Н.Н. Соболева, И.Ю. Малыгина, А.Л. Осинцева // Металловедение и термическая обработка металлов. – 2015. – № 3. – С. 39–46.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).