Influence of Welding Conditions and Different Current Sources on Formation of Welded Seam of Steel Austenitic Stainless Chromium-Nickel Steel

Cover Page

Cite item

Full Text

Abstract

Introduction. Energy impact exerted by the welding process on the joined parts made of austenite steel contributes to the unfavorable processes in the heat-affected zone (HAZ) of the welded joint, namely to the change of the structural-phase composition, burnout of alloying elements, reduction of strength characteristics, which is a prerequisite to the formation of nuclei of corrosion attack during operation and a decrease in mechanical characteristics of the welded structure. All known methods of enhancing corrosion resistance of welded joints influence only the weld metal, but have no significant influence the heat-affected zone state and do not change its corrosion resistance. The purpose of the work. Therefore, selection of welding conditions, reducing the burnout of alloying elements and shortening the HAZ extension is a relevant task. The paper studies the welded joints of austenitic stainless chromium-nickel steel obtained by welding using power sources that implement different forms of energy conversion: VDU-506 (traditional) and ARC 200i (high-frequency) with application of coated electrodes of ОК-61.30 grade. The research methods are spectral analysis of the chemical composition and metallographic studies of weld metal. Results and Discussion. It is revealed that the dynamic properties of power sources that implement different methods of energy conversion influence the chemical, structural and phase composition of the weld metal. It is established that the use of an inverter rectifier, as compared with a diode one, promotes a content increase in the weld metal: Mn by 14% and Cr by 3%; a decrease of the grain size in the weld metal by 40% and in the heat-affected zone by 44%; a reduction in the HAZ extension of the welded seam by 32%.

About the authors

R. A. Mamadaliev

Email: Mamadaliev_it@mail.ru
Senior Lecturer, Tyumen Industrial University, Mamadaliev_it@mail.ru

V. N. Kuskov

Email: vnkuskov@yandex.ru
D.Sc. (Engineering), Professor, Tyumen Industrial University, vnkuskov@yandex.ru

P. V. Bakhmatov

Email: mim@knastu.ru
Ph.D. (Engineering), Associate Professor, Komsomolsk-na-Amure State University, mim@knastu.ru

D. P. Il’yashchenko

Email: mita8@rambler.ru
Ph.D. (Engineering), Yurga Institute of Technology, TPU Affiliate, mita8@rambler.ru

References

  1. Arc characteristics and metal transfer process of hybrid laser double GMA welding / H.L. Wei, H. Li, L.J. Yang, Y. Gao, X.P. Ding // International Journal of Advanced Manufacturing Technology. – 2015. – Iss. 77 (5–8). – P. 1019–1028. – doi: 10.1007/s00170-014-6537-5.
  2. Secondary austenite precipitation during the welding of duplex stainless steels / S. de Alencar Pires, M.F. de Campos, C.J. Marcelo, C.R. Xavier // Materials Science Forum. – 2016. – N 869. – P. 562–566.
  3. Kuskov V.N., Mamadaliev R.A., Obukhov A.G. The transition of the alloying elements in the weld metal when welding steel 12X18H10T // Fundamental Research. – 2013. – N 11. – P. 1794–1797.
  4. Physical nature of the processes in forming structures, phase and chemical compositions of medium-carbon steel welds / D.P. Il’;yaschenko, D.A. Chinakhov, V.I. Danilov, G.V. Schlyakhova, Yu.M. Gotovshchik // IOP Conference Series: Materials Science and Engineering. – 2015. – N 91 (1). – P. 45–51.
  5. Influence of filler wire composition on weld microstructures of a 444 ferritic stainless steel grade / V. Villaret, F. Deschaux-Beaume, C. Bordreuil, S. Rouquette, C. Chovet // Journal of Materials Processing Technology. – 2013. – Vol. 213, iss. 9. – P. 1538–1547. – doi: 10.1016/j.jmatprotec.2013.03.026.
  6. Пановко В.М. О коэффициентах перехода и расчете химического состава металла при наплавке // Сварочное производство. – 1970. – № 8. – С. 33–35.
  7. Petronius I., Bamberger M. The influence of basic vs. rutile electrode on the composition of duplex stainless steel weldments // Materials Research and Advanced Techniques. – 2002. – Vol. 93, iss. 2. – P. 155–159. – doi: 10.3139/146.020155.
  8. Silva E.C. da, Garutti A.C. Engineering optimization experiments applied to welded joints // SAE Technical Papers. – 1997. – N 5. – P. 27–35.
  9. Мазель А.Г. Об оценке переноса металла в дуге при ручной сварке по осциллограммам тока и напряжения дуги // Сварочное производство. – 1957. – № 12. – C. 9–12.
  10. Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding / M. Bachmann, V. Avilov, A. Gumenyuk, M. Rethmeier // Physics Procedia. – 2014. – Vol. 56. – P. 515–524. – doi: 10.1016/j.phpro.2014.08.006.
  11. Вотинова Е.Б., Шалимов М.П. Взаимосвязь усредненного и парциальных коэффициентов перехода элементов при ручной дуговой сварке // Вестник ЮУрГУ. Серия: Металлургия. – 2015. – Т. 15, № 1. – C. 88–90.
  12. Votinova E.B., Shalimov M.P. Application of the complete material balance method to estimate the composition of weld metal in manual arc welding // Solid State Phenomena. – 2017. – Vol. 265. – P. 762–766. – doi: 10.4028/ href='www.scientific.net/SSP.265.762' target='_blank'>www.scientific.net/SSP.265.762.
  13. Shalimov M.P., Votinova E.B. Optimization of welding electrode coating composition based on simulation of interaction processes in metal-slag-gas system // Materials Science Forum. – 2016. – Vol. 870. – P. 593–597. – doi: 10.4028/ href='www.scientific.net/MSF.870.593' target='_blank'>www.scientific.net/MSF.870.593.
  14. Ueyama T. Welding power sources // Journal of the Japan Welding Society. – 2008. – Vol. 77, iss. 2. – P. 129–134. – doi: 10.2207/jjws.77.129.
  15. Yamaguchi T., Taira T., Hirabayashi K. Improvement of toughness of submerged arc weld metal of controlled rolled steel plates (Report 1) // Journal of the Japan Welding Society. – 1977. – Vol. 46, iss. 9. – P. 656–659. – doi: 10.2207/qjjws1943.46.9_656.
  16. Sorokin L.I., Sidlin Z.A. Evaluation of the effect of alloying elements on pore formation when welding nickel-chromium alloys // Welding International. – 1998. – Vol. 12, iss. 3. – P. 229–232.
  17. Finite element analysis of temperature field in multi-pass welding of thick steel plate / G. Xu, B. Du, Z. Dong, J. Zhu // Transactions of the China Welding Institution. – 2013. – Vol. 34, iss. 5. – P. 87–90.
  18. Mita T. Participation in the welding power sources // Journal of the Japan Welding Society. – 2014. – Vol. 83, iss. 2. – P. 85–87.
  19. Alloying elements transition into the weld metal when using an inventor power source / R.A. Mamadaliev, V.N. Kuskov, A.A. Popova, D.V. Valuev // IOP Conference Series: Materials Science and Engineering. – 2016. – N 127. – P. 15–24.
  20. Modelling of friction stir welding of 304 stainless steel / A. Smith, M. Al-Moussawi, A. Young, S. Cater, M. Faraji // Proceedings of the European Simulation and Modelling Conference ESM’;2016. – Las Palmas, Spain, 2016. – P. 351–355.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).