Influence of the Diffusion Titanizing from Low-Melting Liquid Metal medium on the Performance of Ti-WC-Co and WC-Co Cutting Carbide-Tipped Tool

Cover Page

Cite item

Full Text

Abstract

Introduction. A modern approach to improving the operational properties of cutting tools is covering its surface with functional coatings based on carbides, nitrides, oxides of metals such as titanium, chromium, aluminum, silicon, etc. In spite of a number of cutting tool coating technologies, most of it has such drawbacks as the complexity of the equipment, the limited geometry of the coated products, the limited elemental composition of the coatings, and the low operating properties of the coatings formed. The above drawbacks are absent in the technology of diffusion metallization from the medium of low-melting liquid metal solutions. The purpose of the work: to analyze the effect of diffusion titanizing from low-melting liquid metal medium on the wear resistance of carbide-tipped tool and the quality of machined parts. The methods of investigation. Tests for macro- and microhardness, X-ray spectral analysis, X-ray diffraction analysis, in-situ testing on the tools durability are carried out. The quality of the processed parts is determined. Results and Discussion. It is revealed that functional diffusion titanium layers, obtained by diffusion titanizing from low-melting liquid metal solutions, are formed on the TiC-base. At the same time, the coating is characterized by the presence of two layers – surface layer with a microhardness level of about 30 000 MPa and a transitional layer with a gradual decrease in microhardness level and titanium concentration. It is found that the structure of the diffusion and the transition layers depends on the temperature of diffusion saturation, on the duration of diffusion saturation, as well as on the modes of subsequent heat treatment. The developed technology makes it possible to increase tool life as compared to a tool that does not have a coating up to 7.4 times, and also that has a PVD coating up to 1.85 times, depending on the cutting group and the speed of processing. The coating is most effective at high cutting speed – 190 m/min. At the same time, the roughness parameter Ra is reduced to 2 times, depending on the cutting group and processing conditions.

About the authors

A. G. Sokolov

Email: sag-51@bk.ru
D.Sc. (Engineering), Professor, Kuban State Technological University, sag-51@bk.ru

E. E. Bobylyov

Email: ebobylev@mail.ru
Ph.D. student, Kuban State Technological University, ebobylev@mail.ru

References

  1. Соколов А.Г., Бобылёв Э.Э. Элементно-фазовый состав и свойства диффузионных титановых покрытий на режущем твердосплавном инструменте типа ТК и ВК // Письма о материалах. – 2017. – Т. 7, № 3. – С. 222–228. – doi: 10.22226/2410-3535-2017-3-222-228.
  2. Effect of titanium carbide coating on the osseointegration response in vitro and in vivo / M. Brama, N. Rhodes, J. Hunt, A. Ricci, R. Teghil, S. Migliaccio, C. Della Rocca, S. Leccisotti, A. Lioi, M. Scandurra, G. De Maria, D. Ferro, F. Pu, G. Panzini, L. Politi, R. Scandurra // Biomaterails. – 2007. – Vol. 28, iss. 4. – P. 595–608. – doi: 10.1016/j.biomaterials.2006.08.018.
  3. On the effect of the substrate to target position on the properties of titanium carbide/carbon coatings / J. Daniel, P. Soucek, L. Zábranský, V. Buršíková, M. Stupavská, P. Vašina // Surface And Coatings Technology. – 2017. – Vol. 328. – P. 462–468. – doi: 10.1060/j.surfcoat.2017.06.076.
  4. Formation of titanium carbide (TiC) and TiC@C core-shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid / A. De Bonis, A. Santagata, A. Galasso, A. Laurita, R. Teghil // Journal of Colloid and Interface Science. – 2017. – Vol. 489. – P. 76–84. – doi: 10.1016/j.jcis.2016.08.078.
  5. Titanium carbide coating with enhanced tribological properties obtained by EDC using partially sintered titanium electrodes and graphite powder mixed dielectric / Z.J. Xie, Y.J. Mai, W.Q. Lian, S.L. He, X.H. Jie // Surface and Coatings Technology. – 2016. – Vol. 300. – P. 50–57. – doi: 10.1016/j.surfcoat.2016.04.080.
  6. Understanding the diffusion wear mechanisms of WC-10%Co carbide tools during dry machining of titanium alloys / C. Ramirez, A. Idhil Ismail, C. Gendarme, M. Dehmas, E. Aeby-Gautier, G. Poulachon, F. Rossi // Wear. – 2017. – Vol. 390–391. – P. 61–70. – doi: 10.1016/j.wear.2017.07.003.
  7. Ильин А.А., Строганов Г.Б., Скворцова С.В. Покрытия различного назначения для металлических материалов: учебное пособие. – М.: Альфа-М: Инфра-М, 2013. – 144 с. – (Современные технологии: Магистратура). – ISBN 978-5-98281-355-8.
  8. Григорьев С.Н. Методы повышения стойкости режущего инструмента: учебник для студентов втузов. – М.: Машиностроение, 2011. – 368 с. – ISBN 978-5-94275-591-1.
  9. Bobzin K. High-performance coatings for cutting tools // CIRP Journal of Manufacturing Science and Technology. – 2017. – Vol. 18. – P. 1–9. – doi: 10.1016/j.cirpj.2016.11.004.
  10. Caliskan H., Panjan P., Curbanoglu C. Hard coatings on cutting tools and surface finish // Reference Module in Materials Science and Materials Engineering. Comprehensive Materials Finishing. – 2017. – Vol. 3. – P. 230–242. – doi: 10.1016/B978-0-12-803581-8.09178-5.
  11. Evolution of conventional hard coatings for its use on cutting tools / R. Haubner, M. Lessiak, R. Pitonak, A. Köpf, R. Weissenbacher // International Journal of Refractory Metals and Hard Materials. – 2017. – Vol. 62, part B. – P. 210–218. – doi: 10.1016/j.ijrmhm.2016.05.009.
  12. High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings / Y.-Y. Chang, S.-Y. Weng, C.-H. Chen, F.-X. Fu // Surface and Coatings Technology. – 2017. – Vol. 332. – P. 494–503. – doi: 10.1016/j.surfcoat.2017.06.080.
  13. Balogh Z., Schmitz G. Diffusion in metals and alloys // Physical Metallurgy. – 5th ed. – Amsterdam, Netherlands: Elsevier, 2014. – Vol. 1. – P. 387–559. – doi: 10.1016/b978-0-444-53770-6.00005-8.
  14. Cardarelli F, Taxil P., Savall A. Tantalum protective thin coating techniques for the Chemical Process Industry: molten salts electrocoating as a new alternative // International Journal of Refractory Metals and Hard Materials. – 1996. – Vol. 14, iss. 5–6. – P. 365–381.
  15. Патент 2451108 Российская Федерация, МПК С 23 C 10/26 (2006.01). Способ обработки инструмента из стали или твердого сплава / А.Г. Соколов, Мансиа Салахалдин. – Опубл. 20.05.2012, Бюл. № 14. – 5 с.
  16. Патент 2521187 Российская Федерация, МПК С 23 С 10/18; С 23 С 2/04 (2006.01). Устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов / А.Г. Соколов. – Опубл. 27.06.2014, Бюл. № 18. – 8 с.
  17. Chaevsky M. Comparison of methods of formation of protective coating from high-temperature liquid media // Metal Science and Heat Treatment. – 2001. – Vol. 43, N 11–12. – P. 446.
  18. Платонов Г.Л., Аникин В.Н., Аникеев А.И. Изучение роста износостойких слоев из карбида титана на твердых сплавах // Порошковая металлургия. – 1980. – № 8 (212). – С. 48–52.
  19. Диффузионные карбидные покрытия / В.Ф. Лоскутов, В.Г. Хижняк, Ю.А. Куницкий, М.В. Киндрачук. – Киев: Техника, 1991. – 168 с. – ISBN 5-335-00501-7.
  20. Sokolov E.G., Artem’;ev V.P. Effect of pores in powder materials on the formation of titanium and chromium diffusion coatings // Metal Science and Heat Treatment. – 2002. – Vol. 44, N 9–10. – P. 459. – doi: 10.1023/A:1021981401891.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».