Structure of Explosively Welded Materials: Experimental Study and Numerical Simulation

Cover Page

Cite item

Full Text

Abstract

Purpose: the properties of explosively welded materials to a large extend depend on structure of thin layers which appear near the interface during a high velocity collision of workpieces. The main purpose of this paper was to study formation of materials structure in these layers by simultaneous analysis of numerical simulation results and results of materials characterization. Methods: low carbon steel plates (0.2 wt. %C) were used for explosive welding. The structure of explosively welded material was studied using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The numerical simulation was carried out using smooth particle hydrodynamic (SPH) method in Ansys Autodyn software. Results and discussion: the most significant structural changes occur in a thin layer near the interface of explosively welded materials. The main part of the sample is just insignificantly deformed and slightly heated. High strain rate deformation in the vicinity of the interface leads to localization of strain and significant heating of materials. The conditions of the deformation during the welding are close to adiabatic. Due to the high temperature diffusivity and large temperature gradients the subsequent transfer of the heat to slightly heated layers occurs with high rates (104…107 K/s). This leads to formation of metastable structures (in this study, the martensite structures were observed). The structure of the welded plates forms as a result of competition between strain hardening and temperature softening processes. The SPH simulation successfully reproduced wave formation, vortices formation and jetting phenomena. The geometry of the interface predicted by the simulation was in a very good agreement with geometry, observed in metallographic study. The simulation predicts that the strain in a very thin layer near the interface can exceed e = 6.

About the authors

I. A Bataev

Novosibirsk State Technical University

Email: ivanbataev@ngs.ru
20, Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation

References

  1. Crossland B. Review of the present state-of-the-art in explosive welding // Metals Technology. - 1976. - Vol. 3, iss. 1. - P. 8-20. - doi: 10.1179/030716976803391845.
  2. Crossland B. Explosive welding of metals and its application. - Oxford: Oxford University Press, 1982. - 233 p. - ISBN 978-0198591191.
  3. Shanthala K., Sreenivasa T.N. Review on electromagnetic welding of dissimilar materials // Frontiers of Mechanical Engineering. - 2016. - Vol. 11, iss. 4. - P. 363-373. - doi: 10.1007/s11465-016-0375-0.
  4. Carl L.R. Brass welds made by detonation impulse // Metal Progress. - 1946. - Vol. 46. - P. 102-103.
  5. Blazynski T.Z. Explosive welding, forming and compaction. - Netherlands: Springer, 1983. - 402 p. - ISBN 978-94-011-9751-9.
  6. Crossland B., Williams J.D. Explosive welding // Metallurgical Reviews. - 1970. - Vol. 15, iss. 1. - P. 79-100. - doi: 10.1179/mtlr.1970.15.1.79.
  7. Meyers M.A. Dynamic behavior of materials. - New York: John Wiley & Sons, 1994. - 668 p. - ISBN 9780471582625.
  8. Rinehart J.S., Pearson J. Explosive working of metals. - New York: Macmillan, 1963. - 360 p. - ISBN 978-0080101699.
  9. Дерибас А.А. Физика упрочнения и сварки взрывом. - Новосибирск: Наука, 1980. - 224 с.
  10. Васильев А.А. Укрощенный взрыв // Наука из первых рук. - 2015. - Т. 64, № 4. - C. 14-33.
  11. Качан М.С. Изобретена сварка взрывом [Электронный ресурс]. - URL: https://www.proza.ru/2013/01/05/517 (дата обращения: 15.11.2017).
  12. Конон Ю.А., Первухин Л.Б., Чудновский А.Д. Сварка взрывом. - М.: Машиностроение, 1987. - 216 с.
  13. Захаренко И.Д. Сварка металлов взрывом. - Минск: Навука i тэхнiка, 1990. - 205 с. - ISBN 5-343-00551-9.
  14. Лысак В., Кузьмин С. Сварка взрывом. - М.: Машиностроение, 2005. - 543 с. - ISBN 5-94275-220-6.
  15. Трыков Ю.П., Гуревич Л.М., Шморгун В.Г. Титаностальные композиты и соединения. - Волгоград: ВолгГТУ, 2013. - 344 с. - ISBN 978-5-9948-1011-8.
  16. Компьютерное моделирование деформации составляющих слоев биметалла в процессе сварки взрывом с использованием программы LS-DYNA / И.В. Денисов, А.Ю. Муйземнек, А.Е. Розен, О.Л. Первухина, Ю.А. Гордополов // Известия Волгоградского государственного технического университета. - 2010. - № 5 (65). - C. 66-74.
  17. Влияние состава атмосферы на образование соединения титана со сталью при сварке взрывом / О.Л. Первухина, А.А. Бердыченко, Л.Б. Первухин, Д.В. Олейников // Известия Волгоградского государственного технического университета. - 2006. - № 9. - C. 51-54.
  18. Сварка взрывом: процессы и структуры / О.В. Антонова, Ю.П. Бесшапошников, А.М. Власова, Б.А. Гринберг, Л.М. Гуревич, О.А. Елкина, М.А. Иванов, А.В. Иноземцев, В.Е. Кожевников, С.В. Кузьмин, В.И. Лысак, А.М. Пацелов, В.П. Пилюгин, А.В. Плотников, М.С. Пушкин, В.В. Рыбин, Г.А. Салищев, О.В. Слаутин, А.П. Танкеев, Т.П. Толмачев, В.О. Харламов. - М.: Инновационное машиностроение, 2017. - 236 с. - ISBN 978-5-9909179-0-3.
  19. Fragmentation processes during explosion welding (review) / B. Grinberg, M. Ivanov, V.V. Rybin, O. Elkina, A.M. Patselov, O. Antonova, A. Inozemtsev, T.P. Tolmachev // Russian Metallurgy (Metally). - 2013. - Vol. 2013, iss. 10. - P. 727-737. - doi: 10.1134/S0036029513100030.
  20. Rybin V.V., Zolotorevskii N.Yu., Ushanova E.A. Analysis of the misoriented structures in the model copper-copper compound formed by explosion welding // Technical Physics. - 2014. - Vol. 59, iss. 12. - P. 1819-1832. - doi: 10.1134/S106378421412024X.
  21. Berdychenko A.A., Pervukhin L.B., Pervukhina O.L. Evolution of titanium structure in the zone of the joint formed by explosive welding // Metal Science and Heat Treatment. - 2009. - Vol. 51, iss. 9-10. - P. 476-481. - doi: 10.1007/s11041-010-9196-7.
  22. Розен А.Е. Разработка научных основ технологических процессов взрывного прессования, формирования структуры и свойств сегнетокерамических материалов: дис. … д-ра техн. наук. - Волгоград, 1999. - 391 с.
  23. Explosively welded multilayer Ni-Al composites / I.A. Bataev, T.S. Ogneva, A.A. Bataev, V.I. Mali, M.A. Esikov, D.V. Lazurenko, Y. Guo, A.M. Jorge Junior // Materials and Design. - 2015. - Vol. 88. - P. 1082-1087. - doi: 10.1016/j.matdes.2015.09.103.
  24. Metallic glass formation at the interface of explosively welded Nb and stainless steel / I.A. Bataev, K. Hokamoto, H. Keno, A.A. Bataev, I.A. Balagansky, A.V. Vinogradov // Metals and Materials International. - 2015. - Vol. 21, iss. 4. - P. 713-718. - doi: 10.1007/s12540-015-5020-7.
  25. Рыбин В.В. Большие пластические деформации и разрушение металлов. - М.: Металлургия, 1986. - 224 с.
  26. Батаев И.А. Структура и механические свойства многослойных композиционных материалов, сформированных по технологии сварки взрывом тонколистовых заготовок из низкоуглеродистой стали: дис. … канд. техн. наук. - Новосибирск, 2010. - 226 с.
  27. High cooling rates and metastable phases at the interfaces of explosively welded materials / I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, A.M. Jorge // Acta Materialia. - 2017. - Vol. 135. - P. 277-289. - doi: 10.1016/j.actamat.2017.06.038.
  28. Formation and structure of vortex zones arising upon explosion welding of carbon steels / I.A. Bataev, A.A. Bataev, V.I. Mali, V.G. Burov, E.A. Prikhod'ko // Physics of Metals and Metallography. - 2012. - Vol. 113, iss. 3. - P. 233-240. - doi: 10.1134/S0031918X12030039.
  29. Structural changes of surface layers of steel plates in the process of explosive welding / I.A. Bataev, A.A. Bataev, V.I. Mali, V.A. Bataev, I.A. Balaganskii // Metal Science and Heat Treatment. - 2014. - Vol. 55, iss. 9-10. - P. 509-513. - doi: 10.1007/s11041-014-9663-7.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».