The effect of heat treatment on the structure and properties of metallic layered composite materials formed by explosive welding of heterogeneous steels thin plates

Cover Page

Cite item

Full Text

Abstract

Three types of metal laminated composite materials consisting of alternating plates of durable and plastic steels are formed by explosive welding. In order to increase the structural strength indicators, the derived composite materials are heat treated. Compositions containing maraging steel are subjected to artificial aging for 3 hours at 490 ° C . Compositions containing tool steel are quenched in oil at 880 ° C and then tempered at 550 ° C . The mechanical properties of the materials are determined by its structure. Carried out static and dynamic mechanical tests confirmed the positive effect of heat treatment on the properties of the layered composite materials, in spite of the diffusion zones formation in the structure. During heat treatment of multilayer materials, obtained by explosive welding of chrome-nickel austenitic steel and structural tool steel thin plates, an explicit gradient structure is formed, and characterized by the presence of several zones with different structure. An accelerate formation of these zones during heating contributes to the non-equilibrium structure of materials in the heat-affected zone of a width of about 100 μm, which is formed as a result of severe plastic deformation of dynamically interacting steel billets. The width of the diffusion zones along weld profile waves is derived from the different degrees of plastic deformation. It is established experimentally that the effect of the deformation and heat treatment processes on the nature of the hardening of chromium-nickel, maraging and tool steels differs sharply. The results of the microhardness measuring in the central areas of the plates indicate that chromium-nickel steel is hardened by explosive welding on 42%. In the soak process at 490 °C its microhardness is practically unchanged. Maraging steel conversely is undisposed to hardening during welding and is hardened on aging stage at 490 °C by 53%. The mechanism of maraging steel hardening is due to the formation of intermetallic particles. The microhardness of the tool steel during explosion welding is increased by 32. Heat treatment allows to further raise the microhardness level of the tool steel by 48%. It has been shown experimentally that there is a difference in average 30% of the stress limit values, compared with calculated values obtained by using the rule of mixtures. Difference in the level of the stress limit values is due to the work hardening that occurs during the dynamic interaction of steel billets.

About the authors

E. A Lozhkina

Novosibirsk State Technical University

Email: helens_case@ngs.ru
20, Prospect K. Marksa, Novosibirsk, 630073, Russian Federation

V. S Lozhkin

Novosibirsk State Technical University

Email: Logkaa@mail.ru
20, Prospect K. Marksa, Novosibirsk, 630073, Russian Federation

V. I Mali

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the RAS

Email: mali@hydro.nsc.ru
15, Ac. Lavrentieva ave., Novosibirsk, 630090, Russian Federation

M. A Esikov

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the RAS

Email: EsikovMaxim@ngs.ru
15, Ac. Lavrentieva ave., Novosibirsk, 630090, Russian Federation

References

  1. Энтин Р.И., Курдюмов Г.В. Пути повышения прочности и пластичности конструкционных сталей // Вестник Академии наук СССР. - 1967. - № 8. - С. 20-26.
  2. Тушинский Л.И. Структурная теория конструктивной прочности материалов. - Новосибирск: Изд-во НГТУ, 2004. - 400 с.
  3. Новиков И.И. Теория термической обработки металлов. - М.: Металлургия, 1986. - 480 с.
  4. Бернштейн М.Л., Займовский В.А., Капуткина Л.М. Термомеханическая обработка стали. - М.: Металлургия, 1983. - 480 с.
  5. Лахтин Ю.М., Арзамасов Б.Н. Химико-термическая обработка металлов. - М.: Металлургия, 1985. - 256 с.
  6. Korzhov V.P., Kiiko V.M., Karpov M.I. Structure of multilayer microcomposite Ni/Al obtained by diffusion welding // Inorganic Materials: Applied Research. - 2012. - Vol. 3, iss. 4. - P. 314-318. - doi: 10.1134/S2075113312040107.
  7. Optimizing the diffusion welding process for alloy 800H: thermodynamic, diffusion modeling, and experimental work / R.E. Mizia, D.E. Clark, M.V. Glazoff, T.E. Lister, T.L. Trowbridge // Metallurgical and Materials Transactions: A. - 2013. - Vol. 44, iss. 1, suppl. - P. 154-161. - doi: 10.1007/s11661-011-0991-6.
  8. Harach D.J., Vecchio K.S. Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air // Metallurgical and Material Transaction: A. - 2001. - Vol. 32, iss. 6. - P. 1493-1505. - doi: 10.1007/s11661-001-0237-0.
  9. Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites / A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey // Acta Materialia. - 2003. - Vol. 51, iss. 10. - P. 2933-2957. - doi: 10.1016/S1359-6454(03)00108-3.
  10. Luo J.-G., Acoff V.L. Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils // Materials Science and Engineering: A. - 2004. - Vol. 379, iss. 1-2. - P. 164-172. - doi: 10.1016/j.msea.2004.01.021.
  11. Kong F., Chen Y., Zhang D. Interfacial microstructure and shear strength of Ti6Al4V/TiAl laminate composite sheet fabricated by hot packed rolling // Materials and Design. - 2011. - Vol. 32, iss. 5. - P. 3167-3172. - doi: 10.1016/j.matdes.2011.02.052.
  12. The increase of structural strength of multilayered materials produced by explosive welding of dissimilar steels thin plates / E.A. Prikhodko, V.S. Lozhkin, V.I. Mali, M.A. Esikov // The 8 International Forum on Strategic Technologies (IFOST 2013): proceedings, Mongolia, Ulaanbaatar, 28 June - 1 July 2013. - Ulaanbaatar, 2013. - Vol. 1. - P. 37-40.
  13. The effect of heat treatment on the microstructure and mechanical properties of multilayered composites welded by explosion / E.A. Prikhodko, I.A. Bataev, A.A. Bataev, V.S. Lozhkin, V.I. Mali, M.A. Esikov // Advanced Materials Research. - 2012. - Vol. 535-537. - P. 231-234. - doi: 10.4028/ href='www.scientific.net/AMR.535-537.231' target='_blank'>www.scientific.net/AMR.535-537.231.
  14. Лысак В.И., Кузьмин С.В. Создание композиционных материалов сваркой взрывом // Вестник Южного научного центра. - 2013. - Т. 9, юбилейный вып. - С. 64-69.
  15. Лысак В.И., Кузьмин С.В. Сварка взрывом. - М.: Машиностроение, 2005. - С. 121-138.
  16. Батаев И.А. Структура и механические свойства многослойных материалов, сформированных по технологии сварки взрывом тонколистовых заготовок из низкоуглеродистой стали: дис.. канд. техн. наук. - Новосибирск, 2010. - 266 с.
  17. ASM Handbook. Vol. 9. Metallography and Microstructures / ed. by G.F. Vander Voort. - Materials Park, Ohio, USA: ASM International Publ., 2004. - 1184 p. - ISBN: 978-0-87170-706-2.
  18. Голованенко С.А., Фонштейн Н.М. Двухфазные низколегированные стали. - М.: Металлургия, 1986. - С. 85.
  19. Биронт В.С., Крушенко Г.Г. Влияние термической и термоциклической обработки на структуру и свойства мартенситно-стареющей стали // Журнал Сибирского федерального университета. Серия: Техника и технологии. - 2008. - Т. 1, № 3. - P. 247-255.
  20. Батаев А.А. Композиционные материалы: строение, получение, применение: учебник. - Новосибирск: Изд-во НГТУ, 2002. - 383 с. - ISBN 5-7782-0315-2.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).