Production of rods and sheets from TiNiHf alloy with high-temperature shape memory effect by longitudinal rolling and rotary forging methods
- Authors: Karelin R.D.1, Komarov V.S.1, Cherkasov V.V.1, Osokin A.A.1, Sergienko K.V.1, Yusupov V.S.1, Andreev V.A.1
-
Affiliations:
- A.A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
- Issue: Vol 27, No 3 (2025)
- Pages: 37-49
- Section: Articles
- URL: https://journal-vniispk.ru/1994-6309/article/view/308840
- DOI: https://doi.org/10.17212/1994-6309-2025-27.3-37-49
- ID: 308840
Cite item
Abstract
Introduction. Ti-Ni based shape memory alloys (SMAs) are functional materials that find widespread practical application in engineering and medicine. Functional properties of Ti-Ni based alloys are sensitive to the chemical composition. To develop alloys with specific properties, ternary SMAs are being actively developed. For example, TiNiHf ternary alloys are characterized by a high-temperature shape memory effect. Today, there is a demand for SMAs used in the production of functional elements with a response temperature of more than 120 °C. These alloys must also have sufficient ductility to obtain deformed semi-finished products for the subsequent manufacture of heat-sensitive functional elements. Also among the current issues of developing the practical application of TiNiHf alloys is the lack of technological schemes for obtaining semi-finished products from TiNiHf SMAs. The purpose of this work is study the feasibility of conducting deformation processing of the studied TiNiHf alloys with a high-temperature shape memory effect and to identify the relationships between phase composition and mechanical characteristics and the applied processing method. In this work, the possibility of producing sheets and rods from TiNiHf alloys with 5 and 10 at.% Hf and 50.0 at.% Ni by longitudinal rolling, caliber rolling, and rotary forging was investigated. The research methods were: X-ray analysis, differential scanning calorimetry, and measurement of Vickers hardness. Results and discussion. It was found that the TiNiHf alloy with 10 at.% Hf has insufficient ductility. From the alloy with 5 at.% Hf, blanks in the form of sheets and rods of various sizes were obtained by using longitudinal rolling and rotary forging processes. It was shown that hot deformation allows increasing the hardness of the studied TiNiHf alloy with 5 at.% Hf compared to the cast state, from 232 HV to 242–264 HV. Cold deformation leads to a significant increase in hardness values up to 362–394 HV. Characteristic temperatures of the forward and reverse martensitic transformation are quite stable. The obtained results indicate the potential of using longitudinal rolling and rotary forging to obtain semi-finished products of TiNiHf alloys with 5 at.% Hf and to improve the functional and mechanical properties of the alloy after smelting.
Keywords
About the authors
Roman D. Karelin
A.A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Author for correspondence.
Email: rdkarelin@gmail.com
ORCID iD: 0000-0002-4795-8668
SPIN-code: 5781-9944
Scopus Author ID: 57193831436
ResearcherId: Q-1966-2017
Ph.D. (Engineering), Scientific associate
Russian Federation, 49 Leninsky Ave., Moscow, 119334, Russian FederationViktor S. Komarov
A.A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: vickomarov@gmail.com
ORCID iD: 0000-0003-4710-3739
SPIN-code: 5967-3811
Scopus Author ID: 7202434425
ResearcherId: H-7841-2015
Ph.D. (Engineering), Leading researcher
Russian Federation, 49 Leninsky Ave., Moscow, 119334, Russian FederationVladimir V. Cherkasov
A.A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: cherkasov.vv@misis.ru
ORCID iD: 0000-0002-5450-3565
SPIN-code: 7855-2039
Scopus Author ID: 57280236300
ResearcherId: AGZ-3174-2022
Master’s Degree student
Russian Federation, 49 Leninsky Ave., Moscow, 119334, Russian FederationArtem A. Osokin
A.A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: art.osokin1201@icloud.com
ORCID iD: 0009-0008-4945-3648
Senior Laboratory assistant
Russian Federation, 49 Leninsky Ave., Moscow, 119334, Russian FederationKonstantin V. Sergienko
A.A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: shulf@yandex.ru
ORCID iD: 0000-0003-4018-4599
SPIN-code: 7807-6056
Scopus Author ID: 56340208100
ResearcherId: P-9845-2017
Junior researcher
Russian Federation, 49 Leninsky Ave., Moscow, 119334, Russian FederationVladimir S. Yusupov
A.A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: vsyusupov@mail.ru
ORCID iD: 0000-0002-0640-2217
SPIN-code: 6436-3604
Scopus Author ID: 6603520772
ResearcherId: L-7228-2017
D.Sc. (Engineering, Head of Laboratory
Russian Federation, 49 Leninsky Ave., Moscow, 119334, Russian FederationVladimir A. Andreev
A.A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: art.osokin1201@icloud.com
ORCID iD: 0000-0003-3937-1952
SPIN-code: 6187-9894
Scopus Author ID: 57201611985
ResearcherId: E-3618-2019
Ph.D. (Engineering), Senior researcher
Russian Federation, 49 Leninsky Ave., Moscow, 119334, Russian FederationReferences
- A review on application of shape memory alloys / M. Sadashiva, M.Y. Sheikh, N. Khan, R. Kurbet, T.D. Gowda // International Journal of Recent Technology and Engineering (IJRTE). – 2021. – Vol. 9 (6). – P. 111–120. – doi: 10.35940/ijrte.F5438.039621.
- Nair V.S., Nachimuthu R. The role of NiTi shape memory alloys in quality of life improvement through medical advancements: A comprehensive review // Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. – 2022. – Vol. 236 (7). – P. 923–950. – doi: 10.1177/09544119221093460.
- Shape memory alloy (SMA) actuators: The role of material, form, and scaling effects / M.S. Kim, J.K. Heo, H. Rodrigue, H.T. Lee, S. Pané, M.W. Han, S.H. Ahn // Advanced Materials. – 2023. – Vol. 35 (33). – P. 2208517. – doi: 10.1002/adma.202208517.
- Features of Ti-Ni alloy structure formation under multi-axial quasi-continuous deformation and post-deformation annealing / I. Khmelevskaya, V. Komarov, R. Kawalla, S. Prokoshkin, G. Korpala // Materials Today: Proceedings. – 2017. – Vol. 4 (3). – P. 4830–4835. – doi: 10.1016/j.matpr.2017.04.079.
- Effect of temperature-deformation regimes of equal channel angular pressing in core-shell mode on the structure and properties of near-equiatomic titanium nickelide shape memory alloy / R. Karelin, V. Komarov, I. Khmelevskaya, V. Cherkasov, V. Andreev, V. Yusupov, S. Prokoshkin // Journal of Alloys and Compounds. – 2024. – Vol. 1005. – P. 176071. – doi: 10.1016/j.jallcom.2024.176071.
- Effect of post-deformation annealing on structure and properties of nickel-enriched Ti-Ni shape memory alloy deformed in various initially deformation-induced structure states / V. Komarov, R. Karelin, I. Khmelevskaya, V. Yusupov, D. Gunderov // Crystals. – 2022. – Vol. 12 (4). – P. 506. – doi: 10.3390/cryst12040506.
- Structure and properties of TiNi shape memory alloy after low-temperature ECAP in shells / R. Karelin, V. Komarov, I. Khmelevskaya, V. Andreev, V. Yusupov, S. Prokoshkin // Materials Science and Engineering: A. – 2023. – Vol. 872. – P. 144960. – doi: 10.1016/j.msea.2023.144960.
- Parida J., Mishra S.C. NiTi-based ternary alloys // Nickel-Titanium Smart Hybrid Materials. – Elsevier, 2022. – P. 191–213. – doi: 10.1016/B978-0-323-91173-3.00020-1.
- Parvizi S., Hashemi S.M., Moein S. NiTi shape memory alloys: properties // Nickel-titanium smart hybrid materials. – Elsevier, 2022. – P. 399–426. – doi: 10.1016/B978-0-323-91173-3.00021-3.
- Ahmad M. Effect of ternary element addition on properties of TiNi-based shape memory alloys for engineering and medical applications // Journal of Metastable and Nanocrystalline Materials. – 2023. – Vol. 36. – P. 7–20. – doi: 10.1016/B978-0-323-91173-3.00021-3.
- Sampath S., Nguyen T.A. NiTi-based ternary shape-memory alloys // Nickel-titanium smart hybrid materials. – Elsevier, 2022. – P. 123–137. – doi: 10.1016/B978-0-323-91173-3.00006-7.
- Tong Y., Shuitcev A., Zheng Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature // Advanced Engineering Materials. – 2020. – Vol. 22. – P. 1900496. – doi: 10.1002/adem.201900496.
- Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys / O. Karakoc, K.C. Atli, A. Evirgen, J. Pons, R. Santamarta, O. Benafan, R.D. Noebe, I. Karaman // Materials Science and Engineering: A. – 2020. – Vol. 794. – P. 139857. – doi: 10.1016/j.msea.2020.139857.
- The effect of stress-induced martensite aging in tension and compression on B2-B19′ martensitic transformation in Ni50.3Ti32.2Hf17.5 high-temperature shape memory alloy / A.I. Tagiltsev, E.Y. Panchenko, E.E. Timofeeva, Y.I. Chumlyakov, I.D. Fatkullin, E.S. Marchenko, I. Karaman // Smart Materials and Structures. – 2021. – Vol. 30 (2). – P. 218–225. – doi: 10.1088/1361-665X/abdaa8.
- Nanostructured Ti29.7Ni50.3Hf20 high temperature shape memory alloy processed by high-pressure torsion / A. Shuitcev, D.V. Gunderov, B. Sun, L. Li, R.Z. Valiev, Y.X. Tong // Journal of Materials Science & Technology. – 2020. – Vol. 52. – P. 218–225. – doi: 10.1016/j.jmst.2020.01.065.
- Akgul O., Tugrul H.O., Kockar B. Effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy // Journal of Materials Research. – 2020. – Vol. 35 (12). – P. 1572–1581. – doi: 10.1557/jmr.2020.139.
- Thermal expansion of martensite in Ti29.7Ni50.3Hf20 shape memory alloy / A. Shuitcev, R.N. Vasin, A.M. Balagurov, L. Li, I.A. Bobrikov, Y.X. Tong // Intermetallics. – 2020. – Vol. 125. – P. 106889. – doi: 10.1016/j.intermet.2020.106889.
- Design of a NiTiHf shape memory alloy with an austenite finish temperature beyond 400 ?C utilizing artificial intelligence / A.A. Catal, E. Bedir, R. Yilmaz, D. Canadinc // Journal of Alloys and Compounds. – 2022. – Vol. 904. – P. 164135. – doi: 10.1016/j.jallcom.2022.164135.
- Effects of microstructure and deformation conditions on the hot formability of Ni-Ti-Hf shape memory alloys / J.H. Kim, C.H. Park, S.W. Kim, J.K. Hong, C.S. Oh, Y.M. Jeon, K.M. Kim, J.T. Yeom // Journal of Nanoscience and Nanotechnology. – 2014. – Vol. 14. – P. 9548–9553. – doi: 10.1166/jnn.2014.10191.
- Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy / N. Babacan, M. Bilal, C. Hayrettin, J. Liu, O. Benafan, I. Karaman // Acta Materialia. – 2018. – Vol. 157. – P. 228–244. – doi: 10.1016/j.actamat.2018.07.009.
- Processing and scalability of NiTiHf high-temperature shape memory alloys / O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe, D.J. Gaydosh, R.B. Rogers // Shape Memory and Superelasticity. – 2021. – Vol. 7. – P. 109–165. – doi: 10.1007/s40830-020-00306-x.
- Деформационная способность сплава с памятью формы TiNiHf при прокатке с импульсным током / В.В. Столяров, В.А. Андреев, Р.Д. Карелин, У.Х. Угурчиев, В.В. Черкасов, В.С. Комаров, В.С. Юсупов // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 3. – С. 66–75. – doi: 10.17212/1994-6309-2022-24.3-66-75.
- Production mechanical and functional properties of long-length TiNiHf rods with high-temperature shape memory effect / R. Karelin, V. Komarov, V. Cherkasov, V. Yusupov, S. Prokoshkin, V. Andreev // Materials. – 2023. – Vol. 16 (2). – P. 615. – doi: 10.3390/ma16020615.
- Tailoring thermal and electrical conductivities of a Ni-Ti-Hf-based shape memory alloy by microstructure design / M. Keret-Klainer, R. Padan, Y. Khoptiar, Y. Kauffmann, Y. Amouyal // Journal of Materials Science. – 2022. – Vol. 57 (25). – P. 12107–12124. – doi: 10.1007/s10853-022-07383-6.
Supplementary files
