Effect of heat treatment on the structure and properties of magnesium alloy MA20 subjected to severe plastic deformation

Cover Page

Cite item

Abstract

Introduction. One of the most promising fields for the application of magnesium alloys is medicine. Their key advantages are bioresorbability and a low elastic modulus, comparable to that of human cortical bone (up to 30 GPa). Biocompatible Mg-Zn-Zr-Ce (MA20) system alloys are among the most promising for medical applications. Due to their relatively low mechanical properties, the development of severe plastic deformation (SPD) techniques for forming an ultrafine-grained (UFG) state in bulk billets of the Mg-Zn-Zr-Ce alloy to achieve optimal functional properties requires further research. Analyzing the conditions for forming a high-strength UFG state necessitates considering various strengthening mechanisms, including well-known ones related to the effect of UFG structures. Identifying the deformation and strain hardening mechanisms in magnesium alloys subjected to SPD is also highly relevant. The purpose of this work is to establish the mechanisms of strain hardening and to investigate the influence of heat treatment on the structure and properties of the MA20 magnesium alloy after combined SPD. Research methods. The study object was the MA20 alloy in a UFG state (wt. %: Mg – 98.0; Zn – 1.3; Ce – 0.1; Zr – 0.1; O – 0.5). The UFG state was achieved via a combined SPD process involving ABC-pressing followed by multi-pass rolling in grooved rolls. To study the effect of annealing on the microstructure and mechanical tensile properties, samples were annealed in air at temperatures of 200, 250, 300, and 500 °C for 24 hours. The microstructure and phase composition of the samples were investigated using optical and transmission electron microscopy. Results and discussion. It was established that applying a combined SPD method (ABC-pressing and multi-pass rolling) to the MA20 alloy results in the formation of an ultrafine-grained structure with an average grain size of about 1 μm. This leads to a significant increase in yield strength (σ0.2) to 250 MPa and ultimate tensile strength (σu) to 270 MPa, while simultaneously reducing ductility to 3%. Annealing at 200 °C was found to preserve the UFG state in the MA20 alloy and to lead to a 100% increase in ductility, with an 8% decrease in σ0.2 and a 4% decrease in σu compared to the initial UFG state (non-annealed). Conclusions. It was revealed that the grain boundary (σgrain = 202 MPa) and dislocation (σdis = 69 MPa) strengthening contributions provide the most significant increase in the strength of the UFG MA20 magnesium alloy. For the magnesium alloy in the UFG and fine-grained (FG) states, a critical grain size interval of (1–7) μm was identified, corresponding to a sharp increase in the intensity of change for the calculated contributions of dislocation (dσdis/ dd), grain boundary (dσgrain/ dd), overall strengthening (dσtotal/dd), and dislocation density (dρ/dd). For the coarse-grained (CG) state of the alloy in the grain size range (7–40) μm, these parameters stabilize.

About the authors

Nikita A. Luginin

Institute of Strength Physics and Materials Sciences SB RAS; National Research Tomsk Polytechnic University

Email: nikishek90@ispms.ru
ORCID iD: 0000-0001-6504-8193
SPIN-code: 3820-6600
Scopus Author ID: 57220996127
ResearcherId: AAG-8084-2021

Engineer

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii; 634050, Russian Federation, Tomsk, Lenin Ave., 30

Anna Yu. Eroshenko

Institute of Strength Physics and Materials Sciences SB RAS

Email: eroshenko@ispms.ru
ORCID iD: 0000-0001-8812-9287
SPIN-code: 4097-7039
Scopus Author ID: 36010424600
ResearcherId: H-2204-2017

Ph.D. (Engineering)

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Konstantin A. Prosolov

Institute of Strength Physics and Materials Sciences SB RAS

Email: Konstprosolov@ispms.ru
ORCID iD: 0000-0003-2176-8636
SPIN-code: 5978-3685
Scopus Author ID: 57201271975
ResearcherId: F-3259-2018
https://www.researchgate.net/profile/Konstantin-Prosolov

Ph.D. (Physics and Mathematics)

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Margarita A. Khimich

Institute of Strength Physics and Materials Sciences SB RAS

Email: khimich@ispms.ru
ORCID iD: 0000-0001-5859-7418
SPIN-code: 2785-2322
Scopus Author ID: 56433266500
ResearcherId: O-2420-2017
https://www.researchgate.net/profile/Margarita-Khimich

Ph.D. (Engineering)

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Ivan A. Glukhov

Institute of Strength Physics and Materials Sciences SB RAS

Email: gia@ispms.ru
ORCID iD: 0000-0001-5557-5950
SPIN-code: 4584-1195
Scopus Author ID: 56439284200
ResearcherId: E-5075-2014

Main specialist

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Alexander O. Panfilov

Institute of Strength Physics and Materials Sciences SB RAS

Email: alexpl@ispms.ru
ORCID iD: 0000-0001-8648-0743
SPIN-code: 7100-8529
Scopus Author ID: 57218921552
ResearcherId: AAT-3367-2021

Junior researcher

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Alexey I. Tolmachev

Institute of Strength Physics and Materials Sciences SB RAS

Email: tolmach@ispms.ru
ORCID iD: 0000-0003-4669-8478
SPIN-code: 6362-0479
Scopus Author ID: 54894882600
ResearcherId: AAG-8118-2021

Main specialist

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Pavel V. Uvarkin

Institute of Strength Physics and Materials Sciences SB RAS

Email: uvarkin@ispms.ru
ORCID iD: 0000-0003-1169-3765
SPIN-code: 4944-4711
Scopus Author ID: 55308247200

Advanced manufacturing engineer

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Alexander D. Kashin

Institute of Strength Physics and Materials Sciences SB RAS

Email: kash@ispms.ru
ORCID iD: 0000-0003-1860-3654
SPIN-code: 8374-9172
Scopus Author ID: 56487345300
ResearcherId: AAQ-3793-2021

Engineer

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Yurii P. Sharkeev

Institute of Strength Physics and Materials Sciences SB RAS; National Research Tomsk Polytechnic University

Author for correspondence.
Email: sharkeev@ispms.ru
ORCID iD: 0000-0001-5037-245X
SPIN-code: 1844-5410
Scopus Author ID: 7003598948
ResearcherId: E-5116-2014
https://www.researchgate.net/profile/Yurii-Sharkeev

D.Sc. (Physics and Mathematics), Professor

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii; 634050, Russian Federation, Tomsk, Lenin Ave., 30

References

  1. Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy / Y. Yuan, A. Ma, X. Gou, J. Jiang, G. Arhin, D. Song, H. Liu // Materials Science and Engineering: A. – 2016. – Vol. 677. – P. 125–132. – doi: 10.1016/j.msea.2016.09.037.
  2. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy / S. Chen, K.-K. Tseng, Y. Tong, W. Li, C.-W. Tsai, J.-W. Yeh, P.K. Liaw // Journal of Alloys and Compounds. – 2019. – Vol. 795. – P. 19–26. – doi: 10.1016/j.jallcom.2019.04.291.
  3. Ultra-fine grain size and exceptionally high strength in dilute Mg–Ca alloys achieved by conventional one-step extrusion / H. Pan, C. Yang, Y. Yang, Y. Dai, D. Zhou, L. Chai, Q. Huang, Q. Yang, S. Liu, Y. Ren, G. Qin // Materials Letters. – 2019. – Vol. 237. – P. 65–68. – doi: 10.1016/j.matlet.2018.11.080.
  4. Ultrafine grained Mg-Zn-Ca-Mn alloy with simultaneously improved strength and ductility processed by equal channel angular pressing / L.B. Tong, J.H. Chu, Z.H. Jiang, S. Kamado, M.Y. Zheng // Journal of Alloys and Compounds. – 2019. – Vol. 785. – P. 410–421. – doi: 10.1016/j.jallcom.2019.01.181.
  5. Effect of element Ce on the strain rate sensitivity of Mg-Zn-Zr alloy / C. Xu, Z. Wang, L. Zhou, F. Wang, Z. Wei, P. Mao // Journal of Magnesium and Alloys. – 2025. – Vol. 13 (8). – P. 4005–4019. – doi: 10.1016/j.jma.2025.04.017.
  6. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg–Mn–Zn–Nd alloys for biomedical applications / Y.-L. Zhou, Y. Li, D.-M. Luo, Y. Ding, P. Hodgson // Materials Science and Engineering: C. – 2015. – Vol. 49. – P. 93–100. – doi: 10.1016/j.msec.2014.12.057.
  7. Plastic deformation behaviors of a Mg–Ce–Zn–Zr alloy / K. Yu, W. Li, J. Zhao, Z. Ma, R. Wang // Scripta Materialia. – 2003. – Vol. 48 (9). – P. 1319–1323. – doi: 10.1016/S1359-6462(03)00046-0.
  8. In vitro and in vivo study on fine-grained Mg–Zn–RE–Zr alloy as a biodegradeable orthopedic implant produced by friction stir processing / V.C. Shunmugasamy, M. AbdelGawad, M.U. Sohail, T. Ibrahim, T. Khan, T.D. Seers, B. Mansoor // Bioactive Materials. – 2023. – Vol. 28. – P. 448–466. – doi: 10.1016/j.bioactmat.2023.06.010.
  9. Volkova E.F. Some regular features of formation of phase composition in a magnesium alloy of the Mg – Zn – Zr – Y system // Metal Science and Heat Treatment. – 2014. – Vol. 55 (9–10). – P. 477–482. – doi: 10.1007/s11041-014-9657-5.
  10. Structure and mechanical properties of the Mg-Y-Gd-Zr alloy after high pressure torsion / S.V. Dobatkin, L.L. Rokhlin, E.A. Lukyanova, M.Y. Murashkin, T.V. Dobatkina, N.Y. Tabachkova // Materials Science and Engineering: A. – 2016. – Vol. 667. – P. 217–223. – doi: 10.1016/j.msea.2016.05.003.
  11. Evolution of mechanical properties of LAE442 magnesium alloy processed by extrusion and ECAP / P. Minárik, R. Král, J. Pešicka, F. Chmelík // Journal of Materials Research and Technology. – 2015. – Vol. 4 (1). – P. 75–78. – doi: 10.1016/j.jmrt.2014.10.012.
  12. Effect of deformation processing of the dilute Mg-1Zn-0.2Ca alloy on the mechanical properties and corrosion rate in a simulated body fluid / D. Merson, A. Brilevsky, P. Myagkikh, M. Markushev, A. Vinogradov // Letters on Materials. – 2020. – Vol. 10 (2). – P. 217–222. – doi: 10.22226/2410-3535-2020-2-217-222.
  13. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility / Z.-Z. Jin, M. Zha, S.-Q. Wang, S.-C. Wang, C. Wang, H.-L. Jia, H.-Y. Wang // Journal of Magnesium and Alloys. – 2022. – Vol. 10 (5). – P. 1191–1206. – doi: 10.1016/j.jma.2022.04.002.
  14. Nie J.-F. Precipitation and hardening in magnesium alloys // Metallurgical and Materials Transactions A. – 2012. – Vol. 43 (11). – P. 3891–3939. – doi: 10.1007/s11661-012-1217-2.
  15. Thermally activated nature of basal and prismatic slip in mg and its alloys / M.A. Shabana, J.J. Bhattacharyya, M. Niewczas, S.R. Agnew // Magnesium Technology 2021. – Cham: Springer, 2021. P. 53–60. – doi: 10.1007/978-3-030-65528-0_9.
  16. Yue Y., Wang J., Nie J.-F. Twin-solute, twin-dislocation and twin-twin interactions in magnesium // Journal of Magnesium and Alloys. – 2023. – Vol. 11 (10). – P. 3427–3462. – doi: 10.1016/j.jma.2023.07.015.
  17. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys – A review / L. Li, W. Liu, F. Qi, D. Wu, Z. Zhang // Journal of Magnesium and Alloys. – 2022. – Vol. 10 (9). – P. 2334–2353. – doi: 10.1016/j.jma.2022.09.003.
  18. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation // Progress in Materials Science. – 2000. – Vol. 45 (2). – P. 103–189. – doi: 10.1016/S0079-6425(99)00007-9.
  19. Plastic deformation of nanostructured materials / A.M. Glezer, E.V. Kozlov, N.A. Koneva, N.A. Popova, I.A. Kurzina. – CRC Press, 2017. – ISBN 9781315111964.
  20. Влияние предварительной деформации на формирование ультрамелкозернистой структуры при РКУП-обработке магниевых сплавов / А.В. Боткин, Р.З. Валиев, Е.П. Волкова, Г.Д. Худододова, R. Ebrahimi // Физическая мезомеханика. – 2024. – Т. 27, № 4. – С. 63–72. – doi: 10.55652/1683-805X_2024_27_4_63-72.
  21. The effect of rotary swaging on the structure and mechanical properties of Mg-Y-Gd-Zr alloys additionally alloyed with samarium / E. Lukyanova, I. Tarytina, N. Tabachkova, T. Dobatkina, N. Martynenko, O. Rybalchenko, G. Rybalchenko, D. Temralieva, V. Andreev, O. Ovchinnikova, N. Andreeva, S. Dobatkin // Materials Today Communications. – 2025. – Vol. 43. – P. 111857. – doi: 10.1016/j.mtcomm.2025.111857.
  22. Severe plastic deformation of Mg–Zn–Zr–Ce alloys: advancing corrosion resistance and mechanical strength for medical applications / N. Luginin, A. Eroshenko, M. Khimich, K. Prosolov, A. Kashin, P. Uvarkin, A. Tolmachev, I. Glukhov, A. Panfilov, Y. Sharkeev // Metals. – 2023. – Vol. 13 (11). – P. 1847. – doi: 10.3390/met13111847.
  23. Pekguleryuz M., Celikin M. Creep resistance in magnesium alloys // International Materials Reviews. – 2010. – Vol. 55 (4). – P. 197–217. – doi: 10.1179/095066010X12646898728327.
  24. Electron microscopy of thin crystals / P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan, L. Marton // Physics Today. – 1966. – Vol. 19 (10). – P. 93–95. – doi: 10.1063/1.3047787.
  25. Effect of Ce on microstructure and corrosion behavior of as cast ZK60 alloy / L. Sun, Z. Wang, L. Zhou, F. Wang, W. Zhang, Z. Wei, P. Mao // Materials Today Communications. – 2025. – Vol. 42. – P. 111345. – doi: 10.1016/j.mtcomm.2024.111345.
  26. Severe plastic deformation by fast forging to easy produce hydride from bulk Mg-based alloys / D. Fruchart, N. Skryabina, P. de Rango, M. Fouladvind, V. Aptukov // Materials Transactions. – 2023. – Vol. 64 (8). – P. 1886–1893. – doi: 10.2320/matertrans.MT-MF2022049.
  27. Kappes M., Iannuzzi M., Carranza R.M. Hydrogen embrittlement of magnesium and magnesium alloys: a review // Journal of the Electrochemical Society. – 2013. – Vol. 160 (4). – P. C168–C178. – doi: 10.1149/2.023304jes.
  28. Zhang J., Yan S., Qu H. Stress/strain effects on thermodynamic properties of magnesium hydride: A brief review // International Journal of Hydrogen Energy. – 2017. – Vol. 42 (26). – P. 16603–16610. – doi: 10.1016/j.ijhydene.2017.05.174.
  29. Mezbahul-Islam M., Mostafa A.O., Medraj M. Essential magnesium alloys binary phase diagrams and their thermochemical data // Journal of Materials. – 2014. – Vol. 2014. – P. 1–33. – doi: 10.1155/2014/704283.
  30. Aljarrah M., Alnahas J., Alhartomi M. Thermodynamic modeling and mechanical properties of Mg-Zn-{Y, Ce} alloys: Review // Crystals. – 2021. – Vol. 11 (12). – P. 1592. – doi: 10.3390/cryst11121592.
  31. Sharkeev Yu.P., Kozlov E.V. The long-range effect in ion implanted metallic materials: dislocation structures, properties, stresses, mechanisms // Surface and Coatings Technology. – 2002. – Vol. 158–159. – P. 219–224. – doi: 10.1016/S0257-8972(02)00212-8.
  32. Гольдштейн М.И., Литвинов В.С., Бронфин Б.М. Металлофизика высокопрочных сплавов. – М.: Металлургия, 1986. – 312 с.
  33. Gleiter H. Nanostructured materials: basic concepts and microstructure // Acta Materialia. – 2000. – Vol. 48 (1). – P. 1–29. – doi: 10.1016/S1359-6454(99)00285-2.
  34. Raynor G.V. The physical metallurgy of magnesium and its alloys. – New York: Pergamon Press, 1959. – 531 p.
  35. In-situ observation of twinning and detwinning in AZ31 alloy / W. Gong, R. Zheng, S. Harjo, T. Kawasaki, K. Aizawa, N. Tsuji // Journal of Magnesium and Alloys. – 2022. – Vol. 10 (12). – P. 3418–3432. – doi: 10.1016/j.jma.2022.02.002.
  36. Fracture behavior of magnesium alloys – Role of tensile twinning / N.S. Prasad, N. Naveen Kumar, R. Narasimhan, S. Suwas // Acta Materialia. – 2015. – Vol. 94. – P. 281–293. – doi: 10.1016/j.actamat.2015.04.054.
  37. Hall-Petch strengthening in ultrafine-grained Zn with stabilized boundaries / M. Balog, P. Krízik, A. Školáková, P. Švec, J. Kubásek, J. Pinc, M.M. de Castro, R. Figueiredo // Journal of Materials Research and Technology. – 2024. – Vol. 33. – P. 7458–7468. – doi: 10.1016/j.jmrt.2024.11.132.
  38. Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium / A.L. Oppedal, H. El Kadiri, C.N. Tomé, G.C. Kaschner, S.C. Vogel, J.C. Baird, M.F. Horstemeyer // International Journal of Plasticity. – 2012. – Vol. 30–31. – P. 41–61. – doi: 10.1016/j.ijplas.2011.09.002.
  39. Effect of alloying elements on the elastic properties of Mg from first-principles calculations / S. Ganeshan, S.L. Shang, Y. Wang, Z.-K. Liu // Acta Materialia. – 2009. – Vol. 57 (13). – P. 3876–3884. – doi: 10.1016/j.actamat.2009.04.038.

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

Funding

The Russian Science Foundation has financially supported the work, project No. 23-13-00359, available online: https://rscf.ru/project/23-13-00359/. The investigations have been carried out using the equipment of Share Use Centre “Nanotech” of the ISPMS SB RAS and at core facility “Structure, mechanical and physical properties of materials” NSTU.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».