Prediction of tool wear intensity during machining of titanium nickelide TN-1
- Authors: Kisel' A.G.1,2, Bobrovskij N.M.1,3, Podashev D.B.2, Tselikov P.V.2, Kamenov R.U.1,3
-
Affiliations:
- National Research University of Electronic Technology (MIET)
- Kaliningrad State Technical University
- Togliatti State University
- Issue: Vol 27, No 4 (2025)
- Pages: 194-205
- Section: EQUIPMENT. INSTRUMENTS
- URL: https://journal-vniispk.ru/1994-6309/article/view/356670
- DOI: https://doi.org/10.17212/1994-6309-2025-27.4-194-205
- ID: 356670
Cite item
Abstract
Introduction. One of the crucial criteria for evaluating the effectiveness of the chosen strategy for machining blanks is the tool wear intensity. Reducing the intensity of tool wear leads to a reduction in production costs related to cutting tool expenditures and an improvement in overall productivity. The purpose of this work is to reduce tool wear intensity during the machining of a blank manufactured from the shape memory alloy titanium nickelide TN-1. Methods. As part of this research, a complete three-factor turning experiment was conducted on the alloy blank to determine the cutting insert wear intensity over a wide range of cutting conditions. During the tests, the geometric parameters of the resulting chips, specifically thickness and width, were measured. By constructing graphs representing the dependencies of the chip parameters, approximating these dependencies, and assessing the reliability of each approximation, a key parameter was identified for developing a methodology to predict tool wear intensity. Results and discussion. The study demonstrates that for predicting the cutting insert wear intensity when turning a titanium nickelide TN-1 blank, it is advisable to use the dependency on the resulting chip thickness. The established mathematical dependency is described by a system of equations that allows for the determination of the cutting insert wear intensity and the calculation error. The probability of accurately predicting the true value of tool wear intensity within the specified range is at least 87.5% at a 95% confidence level, which indicates sufficient practical accuracy. The essence of the methodology developed within this study for predicting the cutting insert wear magnitude lies in performing a test cut to obtain a chip whose thickness is then used to calculate the wear intensity magnitude and the most probable absolute error based on the established dependencies. Additionally, the study establishes that the wear intensity dependency exhibits a minimum point. This circumstance allowed for the establishment of the minimal possible wear intensity during TN-1 alloy machining, as well as the associated calculation error: δVmin = (0.432 ± 0.096)·10−3 mm−2. For an optimal chip thickness of a = 0.34 mm, the closest tested mode yielding a comparable wear intensity of 0.475⋅10−3 mm−2 is: cutting speed 5 m/min, feed rate 0.2 mm/rev, depth of cut 0.3 mm. The chip thickness for this mode was 0.4 mm.
Keywords
About the authors
Anton G. Kisel'
National Research University of Electronic Technology (MIET); Kaliningrad State Technical University
Email: kisel1988@mail.ru
ORCID iD: 0000-0002-8014-0550
SPIN-code: 7105-3051
Scopus Author ID: 57211275687
ResearcherId: B-9210-2019
Ph.D. (Engineering), Associate Professor
Russian Federation, 124498, Russian Federation, Zelenograd, 1 Shokin Square, Moscow; 236022, Russian Federation, Kaliningrad, 1 Sovetsky ProspektNikolaj M. Bobrovskij
National Research University of Electronic Technology (MIET); Togliatti State University
Email: bobrnm@yandex.ru
ORCID iD: 0000-0002-9299-2822
SPIN-code: 4396-9017
Scopus Author ID: 6507699033
ResearcherId: Q-2015-2015
D.Sc. (Engineering), Associate Professor
Russian Federation, 124498, Russian Federation, Moscow, Zelenograd, 1 Shokin Square; 445020, Russian Federation, Togliatti, 14 Belorusskaya st.Dmitrij B. Podashev
Kaliningrad State Technical University
Email: dbp90@mail.ru
ORCID iD: 0000-0001-9112-9253
SPIN-code: 3538-1829
D.Sc. (Engineering), Associate Professor
Russian Federation, 236022, Russian Federation, Kaliningrad, 1 Sovetsky ProspektPavel V. Tselikov
Kaliningrad State Technical University
Email: Patersort@list.ru
ORCID iD: 0009-0008-6040-0600
SPIN-code: 7202-1420
Post-graduate Student
Russian Federation, 236022, Russian Federation, Kaliningrad, 1 Sovetsky ProspektRenat U. Kamenov
National Research University of Electronic Technology (MIET); Togliatti State University
Author for correspondence.
Email: renatkamenov@mail.ru
ORCID iD: 0000-0001-9181-5704
SPIN-code: 8700-2134
Scopus Author ID: 57211275221
ResearcherId: В-4846-2018
Ph.D. (Engineering)
Russian Federation, 124498, Russian Federation, Moscow, Zelenograd, 1 Shokin Square; 445020, Russian Federation, Togliatti, 14 Belorusskaya st.References
- Zhang G., Wang J. Tool wear mechanism and suppression in machining ferrous materials // Material-oriented cutting processes in precision machining. – Singapore: Springer, 2025. – P. 109–145. – (Springer tracts in mechanical engineering). – doi: 10.1007/978-981-96-2504-8_5.
- Фам Х.Ч., Чигиринский Ю.Л., Полянчиков Ю.Н. Методы снижения интенсивности изнашивания твердосплавного инструмента // Фундаментальные исследования. – 2017. – № 12-1. – С. 132–137.
- Унянин А.Н., Финагеев П.Р. Исследование эффективности методики коррекции режима процесса механической обработки с изменяющимися во времени параметрами в условиях неопределенности технологической информации // Наукоемкие технологии в машиностроении. – 2023. – № 12 (150). – С. 23–29. – doi: 10.30987/2223-4608-2023-23-29.
- Optimization of cutting modes during machining of difficult-to-cut materials / Y. Kusyi, A. Kuk, N. Hryniv, Y. Danylo // New Technologies, Development and Application VIII (NT 2025). – Cham, Switzerland: Springer, 2025. – P. 451–458. – (Lecture Notes in Networks and Systems; vol. 1482). – doi: 10.1007/978-3-031-95194-7_46.
- Чигиринский Ю.Л., Фам Х.Ч. Особенности механической обработки дуплексных коррозионностойких сталей // Известия Волгоградского государственного технического университета. – 2016. – № 5 (184). – С. 51–54.
- Cutting-tool wear and hardening of high-speed steel by local electrospark coating application / V.N. Gadalov, R.E. Abashkin, Yu.V. Boldyrev, E.F. Balabaeva, A.I. Lytkin // Russian Engineering Research. – 2009. – Vol. 29 (4). – P. 419–422. – doi: 10.3103/S1068798X09040200.
- Влияние многослойных покрытий на основе циркония и титана на износостойкость твердосплавного инструмента при точении нержавеющей стали / Е.В. Фоминов, М.М. Алиев, Ю.А. Тороп, А.Е. Мироненко, А.В. Фоменко, А.А. Марченко // Упрочняющие технологии и покрытия. – 2022. – Т. 18, № 11 (215). – С. 494–496. – doi: 10.36652/1813-1336-2022-18-11-494-496.
- Study of the effect of microgeometry parameters of the cutting edge on cutting force, wear, and machinability during milling / A.S. Babaev, V.N. Kozlov, A.R. Semenov, A.S. Shevchuk, V.A. Ovcharenko // Russian Engineering Research. – 2024. – Vol. 44 (12). – P. 1756–1766. – doi: 10.3103/S1068798X24703271.
- Дубров Д.Ю. Снижение интенсивности размерного износа режущих инструментов // Вестник Евразийской науки. – 2018. – Т. 10, № 5. – Ст. 73.
- Кирейнов А.В., Есов В.Б. Влияние полусинтетической СОЖ с металлоорганическими присадками на износ твердосплавного инструмента при точении коррозионностойкой стали 12Х18Н10Т // Фундаментальные и прикладные проблемы техники и технологии. – 2018. – № 5 (331). – С. 70–73.
- Performance of cutting fluids with nanoparticles in the Ti5553 alloy turning process using high-speed cutting / R.G. Dos Santos, J.M.F. De Paiva, R.D. Torres, F.L. Amorim // The International Journal of Advanced Manufacturing Technology. – 2025. – Vol. 136 (10). – P. 4623–4645. – doi: 10.1007/s00170-025-15126-5.
- Nelson N., Nair A.R. The coupling of heat transfer between tool–chip–workpiece interfaces and the wear rate while applying nanofluids as cutting fluids in MQCL-assisted machining: a comprehensive review // Journal of Thermal Analysis and Calorimetry. – 2025. – Vol. 150. – P. 9743–9774. – doi: 10.1007/s10973-025-14400-8.
- Cutting performance and machining economy of the hard cutting tools in clean cutting of hardened H13 steel / Ch. Jing, G. Zheng, X. Cheng, Yu. Cui, H. Liu, H. Zhang // The International Journal of Advanced Manufacturing Technology. – 2024. – Vol. 130 (11–12). – P. 5165–5179. – doi: 10.1007/s00170-024-13012-0.
- Ковалевский С.В., Ковалевская Е.С., Кошевой А.О. Высоковольтный разряд как фактор повышения режущих свойств неперетачиваемых пластин // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 3. – С. 6–17. – doi: 10.17212/1994-6309-2018-20.3-6-17.
- Математическая модель процесса точения с использованием вибрационного воздействия на режущий инструмент / А.Н. Синько, Т.Ю. Никонова, В.В. Юрченко, А.К. Матешов, И.А. Марченко // Морские интеллектуальные технологии. – 2020. – № 2-1 (48). – С. 216–222. – doi: 10.37220/MIT.2020.48.2.045.
- Снижение температурно-силовой напряженности процесса резания при использовании опережающего пластического деформирования / А.А. Бондарев, Я.Н. Отений, Ю.Н. Полянчиков, Д.В. Крайнев // Наукоемкие технологии в машиностроении. – 2016. – № 3 (57). – С. 40–44.
- Амбросимов С.К. Снижение сил резания при опережающем пластическом деформировании металлов // Вестник Брянского государственного технического университета. – 2018. – № 7 (68). – С. 13–18. – doi: 10.30987/article_5ba8a1865b1200.15607548.
- Kupczyk M.J. The use of the addition of Cr3C2 in nanocrystalline sintered carbides to create a composite tool material with better operational properties // Materials Design And Applications V. – Cham, Switzerland: Springer, 2024. – P. 3–14. – (Advanced Structured Materials; vol. 212). – doi: 10.1007/978-3-031-73906-4_1.
- Predicting cutting tool life: models, modelling, and monitoring / S. Khadka, R.A. Rahman Rashid, G. Stephens, A. Papageorgiou, J. Navarro-Devia, S. Hägglund, S. Palanisamy // The International Journal of Advanced Manufacturing Technology. – 2025. – Vol. 136 (7–8). – P. 3037–3076. – doi: 10.1007/s00170-024-14961-2.
- Thakur R., Sahu N.K., Shukla R.K. Parametric optimization of dry turning for improved machining of duplex stainless steel (DSS2205) using response surface methodology (RSM) and design of experiments (DOE) // Sadhana. – 2025. – Vol. 50 (1). – P. 2. – doi: 10.1007/s12046-024-02649-y.
- Vagaská A., Gombár M., Panda A. Application of mathematical programming methods in optimization of cutting conditions in machining processes // Optimization Methods in Mathematical Modeling of Technological Processes. – Cham, Switzerland: Springer, 2023. – P. 95–127. – (Mathematical Engineering). – doi: 10.1007/978-3-031-35339-0_6.
- Kolocheva V.V., Boridko N.V. Methodology for assessing the competitiveness of metal-cutting tools // Ecological Footprint of the Modern Economy and the Ways to Reduce It. – Cham, Switzerland: Springer, 2024. – P. 251–256. – (Advances in Science, Technology & Innovation). – doi: 10.1007/978-3-031-49711-7_42.
- Bayesian neural networks modeling for tool wear prediction in milling Al 6061 T6 under MQL conditions / J. Airao, A. Gupta, Ch.K. Nirala, A.W.J. Hsue // The International Journal of Advanced Manufacturing Technology. – 2024. – Vol. 135 (5–6). – P. 2777–2788. – doi: 10.1007/s00170-024-14678-2.
- Lapshin V.P., Turkin I.A., Dudinov I.O. Compilation of a set of informative features for neural network-based determination of minimum vibration of cutting tools // Russian Engineering Research. – 2024. – Vol. 44 (9). – P. 1356–1362. – doi: 10.3103/S1068798X24702101.
- Mokriskij B.Y., Morozova A.V. Controlling the parameters of the cutting technological system by the dissipative structures state // Proceedings of the 8th International Conference on Industrial Engineering. ICIE 2022. – Cham, Switzerland: Springer, 2023. – (Lecture Notes in Mechanical Engineering). – doi: 10.1007/978-3-031-14125-6_91.
- Experimental Investigation of tool lifespan evolution during turning operation based on the new spectral indicator OLmod / M.Kh. Babouri, N. Ouelaa, M.Ch. Djamaa, Z. Ouelaa, L. Chaabi, A. Djebala // Journal of Vibration Engineering and Technologies. – 2024. – Vol. 12. – P. 5455–5473. – doi: 10.1007/s42417-023-01175-1.
- Optimization of cutting modes during sustainable machining of products based on economic criteria / Y. Kusyi, O. Kostiuk, A. Kuk, A. Attanasio, P. Cocca // Advanced Manufacturing Processes V (InterPartner 2023). – Cham, Switzerland: Springer, 2024. – P. 167–181. – (Lecture Notes in Mechanical Engineering). – doi: 10.1007/978-3-031-42778-7_16.
- Володько С.С. Разработка технологии получения компактных заготовок из порошковых интерметаллидов TiNi и (Ti,Hf)Ni на основе гидридно-кальциевого синтеза: дис. … канд. техн. наук. – М., 2022. – 110 с.
- Карелин Р.Д. Формирование структуры и функциональных свойств никелида титана на основе квазинепрерывной интенсивной пластической деформации в цикле Р.К.У.П. и ротационной ковки: дис. … канд. техн. наук. – М., 2021. – 129 с.
- Метод количественного описания зависимости модуля Юнга никелида титана от температуры / И.Н. Андронов, Н.П. Богданов, Н.А. Северова, А.В. Тарсин // Известия Коми научного центра УрО РАН. – 2013. – № 3 (15). – С. 87–90.
- Патент № 2821357 C1 Российская Федерация, МПК F16K 17/38, F16K 17/40. Клапан однократного действия высокого давления: № 2023130441: заявл. 21.11.2023: опубл. 21.06.2024 / Н.М. Вертаков, В.А. Гречушников, А.В. Каташов, В.А. Панфилов; заявитель Акционерное общество «Опытное конструкторское бюро «Факел».
- Makhalov M.S., Blumenstein V.Yu. The residual stress modeling in surface plastic deformation machining processes with the metal hardening effect consideration // Solid State Phenomena. – 2022. – Vol. 328. – P. 27–37. – doi: 10.4028/p-z92o0e.
Supplementary files
Note
Funding
The research was supported by a grant from the Russian Science Foundation, project No. 22-19-00298-P, https://rscf.ru/en/project/22-19-00298/

