Using the Fuzzy Logic Apparatus in Food Engineering
- Authors: Nikitina M.A.1
-
Affiliations:
- Gorbatov Research Center for Food Systems
- Issue: No 3 (2025)
- Pages: 59-64
- Section: Articles
- URL: https://journal-vniispk.ru/2071-2499/article/view/305483
- DOI: https://doi.org/10.21323/2071-2499-2025-3-59-64
- ID: 305483
Cite item
Full Text
Abstract
The paper considers the issues of improving food quality using the system of fuzzy logic. As a rule, in food combinatorics, researchers deal with uncertainties and imprecise data, for example, with probable spread in values of the chemical composition of plant and animal raw materials, consumers’ taste preferences. The mathematical apparatus of fuzzy logic works with such data and makes models most flexible and realistic. Modeling of food systems in the programming environment R Studio is demonstrated. The construction of “If…, then…” rules and the difference of the standard membership functions (triangular, trapezoidal, and Gaussian) are shown in detail.
Keywords
About the authors
M. A. Nikitina
Gorbatov Research Center for Food Systems
Author for correspondence.
Email: m.nikitina@fncps.ru
Doctor of Technical Sciences
Russian FederationReferences
- Castillo, O. A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems / O. Castillo, L. Amador-Angulo, J. R. Castro, M. Garcia-Valdez // Information Sciences. – 2016. – V. 354. – P. 257–274. doi: 10.1016/j.ins.2016.03.026
- Eerikäinen, T. Fuzzy logic and neural network applications in food science and technology / T. Eerikäinen, P. Linko, S. Linko, T. Siimes, Y.-H. Zhu // Trends in Food Science & Technology. – 1993. – V. 4. – № 8. – P. 237–242. doi: 10.1016/0924-2244(93)90137-y
- Li, H. Output-back fuzzy logic systems and equivalence with feedback neural networks / H. Li // Chinese Science Bulletin. – 2000. – V. 45. – № 7. –P. 592–596. doi: 10.1007/BF02886033
- Фролов, Д. И. Перспективы использования нечеткой логики и нейронных сетей в пищевой технологии / Д. И. Фролов // Инновационная техника и технология. – 2019. – № 1 (18). – С. 10–13. Frolov, D. I. Prospects of using fuzzy logic and neural networks in food technology / D. I. Frolov // Innovative Machinery and Technology. – 2019. – № 1 (18). – P. 10–13.
- Zadeh, L. A. The calculus of fuzzy if-then rules / L. A. Zadeh // In Proceedings: The Twenty-Second International Symposium on Multiple-Valued Logic. – Sendai: IEEE Computer. Society Press, 1992. – 480 p. doi: 10.1109/ISMVL.1992.186834
- Chakraborty, S. Response surface optimization of process parameters and fuzzy analysis of sensory data of high pressure-temperature treated pineapple puree // S. Chakraborty, P. S. Rao, H. N. Mishra // Journal of Food Science. – 2015. – V. 80 . – № 8. – P. E1763-E1775. doi: 10.1111/1750-3841.12967
- Godinho, E. Z. Fuzzy modeling of coffee productivity under different irrigation depths, water deficit and temperature / E. Z. Godinho, F. de Lima Caneppele, L. R. A. G. Filho, C. P. C. Gabriel // Brazilian Journal of Biosystems Engineering. – 2023. – V. 17. – Article 1193. doi: 10.18011/bioeng.2023.v17.1193
- Hernández-Vera, B. Expert system based on fuzzy logic to define the production process in the coffee industry / B. Hernández-Vera, A. A. A. Lasserre, M. G. Cedillo-Campos, L. E. Herrera-Franco, J. Ochoa-Robles // Journal of Food Process Engineering. – 2017. – V. 40. – № 2. – Article e12389. doi: 10.1111/JFPE.12389
- Farzaneh, V. Modelling of the selected physical properties of the fava bean with various moisture contents using Fuzzy Logic Design / V. Farzaneh, A. Ghodsvali, H. Bakhshabadi, M. Ganje, Z. Dolatabadi, I. S. Carvalho // Journal of Food Process Engineering. – 2016. – V. 40. – № 2. – Article e12366. doi: 10.1111/jfpe.12366
- Mahadevappa, J. Fuzzy logic based process control strategy for effective sheeting of wheat dough in small and medium-sized enterprises / J. Mahadevappa, F. Gross, A. Delgado // Journal of Food Engineering. – 2017. – V. 199. – P. 93–99. doi: 10.1016/J.JFOODENG.2016.12.013
- Chowdhury, T. Sensory evaluation of aromatic foods packed in developed starch based films using fuzzy logic / T. Chowdhury, M. Das // International Journal of Food Studies. – 2015. – V. 4. – № 1. – P. 29–48. doi: 10.7455/IJFS/4.1.2015.A3
- Farzaneh, V. Application of an adaptive neuro_fuzzy inference system (ANFIS) in the modeling of rapeseeds’ oil extraction / V. Farzaneh, H. Bakhshabadi, M. Gharekhani, M. Ganje, F. Farzaneh, S. Rashidzadeh et al. // Journal of Food Process Engineering. – 2017. – V. 40. – № 6. – Article e12562. doi: 10.1111/jfpe.12562
- Samodro, B. Maintaining the quality and aroma of coffee with fuzzy logic coffee roasting machine / B. Samodro, B. Mahesworo, T. Suparyanto, D. B. S. Atmaja, B. Pardamean // IOP Conference Series: Earth and Environmental Science. – 2020. – V. 426. – Article 012148. doi: 10.1088/1755-1315/426/1/012148
- Yulianto, T. Application of fuzzy inference system by Sugeno method on estimating of salt production / T. Yulianto, S. Komariyah, N. Ulfaniyah // In AIP Conference Proceedings. – Melville: AIP Publishing. – 2017. – V. 1867. – № 1. – Article 020039. doi: 10.1063/1.4994442
- Basak, S. The use of fuzzy logic to determine the concentration of betel leaf essential oil and its potency as a juice preservative / S. Basak // Food Chemistry. – 2018. – V. 240. – P. 1113–1120. doi: 10.1016/j.foodchem.2017.08.047
- Vivek, K. Application of fuzzy logic in sensory evaluation of food products: a comprehensive study / K. Vivek, K. V. Subbarao, W. Routray, N. R. Kamini, K. K. Dash // Food and Bioprocess Technology. – 2020. – V. 13. – № 1. – P. 1–29. doi: 10.1007/s11947-019-02337-4
- De Pelsmaeker, S. Consumer-driven product development and improvement combined with sensory analysis: a case-study for European filled chocolates / S. De Pelsmaeker, X. Gellynck, C. Delbaere, N. Declercq, K. Dewettinck // Food Quality and Preference. – 2015. – V. 41. – P. 20–29. doi: 10.1016/j.foodqual.2014.10.009
- Ding, H. The application of artificial intelligence and big data in the food industry / H. Ding, J. Tian, W. Yu, D. I. Wilson, B. R. Young, X. Cui et al. // Foods. – 2023. – V. 12. – № 24. – Article 4511. doi: 10.3390/foods12244511
- Shahbazi, Z. A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic / Z. Shahbazi, Y.-C. Byun // Electronics. – 2020. – V. 10. – № 1. – Article 41. doi: 10.3390/electronics10010041
- Краснов, А. Е. Исследование свойств объектов пищевой биотехнологии на основе теории нечетких множеств / А. Е. Краснов, О. Н. Красуля, С. А. Красников, Ю. Г. Кузнецова, С. В. Николаева, В. Ю. Яньков // Хранение и переработка сельскохозяйственного сырья. – 2005. – № 3 . – С. 23–27. Krasnov, A. Ye. Study of food biotechnology products by non-concrete equations theory / A. Ye. Krasnov, O. N. Krasulya, S. A. Krasnikov, Yu. G. Kuznetsova, S. V. Nikolaeva, V. Yu. Yankov // Storage and Processing of Farm Products. – 2005. – № 3. – P. 23–27.
- Краснов, А. Е. Нечеткая логика как основа моделирования рецептур мясных продуктов / А. Е. Краснов, О. Н. Красуля, С. А. Красников, Ю. Г. Кузнецова, С. В. Николаева // Мясная индустрия. – 2005. – № 3. – С. 45–47. Krasnov, A. Ye. Fuzzy logic as a base for modelling of formulations for meat products / A. Ye. Krasnov, O. N. Krasulya, S. A. Krasnikov, Yu. G. Kuznetsova, S. V. Nikolaeva // Meat Industry. – 2005. – № 3. – P. 45–47.
- Никитина, М. А. Алгоритм нечеткой многокритериальной оптимизации составления мясного фарша заданной пищевой ценности / М. А. Никитина, Б. Р. Каповский, А. А. Семенова, А. С. Дыдыкин, В. А. Пчелкина // Все о мясе. – 2024. – № 6. – С. 64–68. doi: 10.21323/2071-2499-2024-6-64-68. Nikitina, M. A. The algorithm of fuzzy multi-criteria optimization of the preparation of minced meat of a given nutritional value / M. A. Nikitina, B. R. Kapovsky, A. A. Semenova, A. S. Didikin, V. A. Pchelkina // Vsyo o Myase. – 2024. – № 6. – Р. 64–68. doi: 10.21323/2071-2499-2024-6-64-68
- Nikitina, M. Fuzzy logic in determination of sensory characteristics of freeze-dried yoghurts with fruit fillers / M. Nikitina, I. Krasnova, G. Semenov // Data Science and Algorithms in Systems. CoMeSySo 2022. Lecture Notes in Networks and Systems. – Switzerland: Springer. – 2023. – V. 597. – P. 710–716. doi: 10.1007/978-3-031-21438-7_59
- Todorov, Y. An intelligent approach to formulate the contents of novel functional food / Y. Todorov, M. Doneva, P. Metodieva, I. Nacheva // 2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings. – IEEE Computer Society Press – 2014. – P. 98–103. doi: 10.1109/INISTA.2014.6873603
- Колодязная, В. С. Применение нечетких множеств при оптимизации компонентного состава пищевых продуктов профилактического назначения / В. С. Колодязная, Л. А. Байченко, И. Н. Яковлева // Процессы и аппараты пищевых производств. – 2012. – № 1. – С. 32. Kolodyaznaya, V. S. Application of fuzzy sets in the optimization of the component composition of food prophylactic / V. S. Kolodjaznaja, L. A. Baychenko, I. N. Jakovleva // Processes and Food Production Equipment. – 2012. – № 1. – P. 32.
- Аллямшин, М. А. Система контроля качества технологического процесса изготовления хлебобулочных изделий на основе нечетко-логических моделей / М. А. Аллямшин, П. М. Мурашев, В. Н. Богатиков // Вестник Тверского государственного технического университета. Серия «Технические науки». – 2020. – № 3 (7). – С. 73–88. doi: 10.46573/2658-5030-2020-3-73-88. Allyamshin, M. A. Quality control system for the technological process of the bakery products manufacture based on fuzzy logic models / M. A. Allyamshin, P. M. Murashev, V. N. Bogatikov // Vestnik of Tver State Technical University. Series «Technical Science». – 2020. – № 3 (7). – P. 73–88. doi: 10.46573/2658-5030-2020-3-73-88
- Bahram-Parvar, M. Adaptive neuro-fuzzy inference system (ANFIS) simulation for predicting overall acceptability of ice cream / M. Bahram-Parvar, F. Salehi, S. M. A. Razavi // Engineering in Agriculture, Environment and Food. – 2017. – V. 10 – № 2. – P. 79–86. doi: 10.1016/j.eaef.2016.11.001
- Chen, C. FuzzyR: an extended fuzzy logic toolbox for the R programming language / C. Chen, T. R. Razak, J. M. Garibaldi // In Proceeding: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). – IEEE Computer Society Press. – 2020. – P. 1–8. doi: 10.1109/FUZZ48607.2020.9177780
- Razak, T. R. Designing the hierarchical fuzzy systems via FuzzyR toolbox / T. R. Razak, C. Chen, J. M. Garibaldi, C. Wagner // In Proceeding: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) – IEEE Computer Society Press. – 2021. – P. 1–6. doi: 10.1109/FUZZ45933.2021.9494485
- Razak, T. R. Decomposing conventional fuzzy logic systems to hierarchical fuzzy systems / T. R. Razak, N. H. Kamis, N. H. Anuar, J. M. Garibaldi, C. Wagner // In Proceeding: 2023 IEEE International Conference on Fuzzy Systems (FUZZ). – IEEE Computer Society Press. – 2023. – P. 1–7. doi: 10.1109/FUZZ52849.2023.10309727
- Razak, T. R. Modelling hierarchical fuzzy systems for mango grading via FuzzyR toolkit / T. R. Razak, N. H. Anuar, J. M. Garibaldi, C. Wagner // In Proceeding: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). – IEEE Computer Society Press. – 2022. – P. 1–8. doi: 10.1109/FUZZ-IEEE55066.2022.9882553
- Kaushik, N. Application of fuzzy logic technique for sensory evaluation of high pressure processed mango pulp and litchi juice and its comparison to thermal treatment / N. Kaushik, A. R. Gondi, R. Rana, P. S. Rao // Innovative Food Science & Emerging Technologies. – 2015. – V. 32. – P. 70–78. doi: 10.1016/j.ifset.2015.08.007
- Fatma, S. Fuzzy analysis of sensory data for ranking of beetroot candy / S. Fatma, N. Sharma, S. P. Singh, A. Jha, A. Kumar // International Journal of Food Engineering. – 2016. – V. 2. – № 1. – P. 26–30. doi: 10.18178/ijfe.2.1.26-30
- Lasunon, P. Fuzzy analytical modeling for sensory evaluation of water meal (Wolffia arrhiza (L.) Wimm.) – rice cracker / P. Lasunon, N. Sengkhamparn // Engineering and Applied Science Research. – 2016. – V. 43. – P. 291–293.
- Faisal, S. Sensory evaluation of probiotic whey beverages formulated from orange powder and flavor using fuzzy logic / S. Faisal, S. Chakraborty, W. Devi, M. Hazarika, V. Puranik // International Food Research Journal. – 2017. – V. 24 – № 2. – P. 703–710.
- Tahsiri, Z. Sensory evaluation of selected formulated milk barberry drinks using the fuzzy approach / Z. Tahsiri, M. Niakousari, S. Khoshnoudi-Nia, S. M. H. Hosseini // Food Science & Nutrition. – 2017. – V. 5. – № 3. – P. 739–749. doi: 10.1002/fsn3.454
- Wirsam, B. Fuzzy sets and fuzzy decision making in nutrition / B. Wirsam, A. Hahn, E. O. Uthus, C. Leitzmann // European Journal of Clinical Nutrition. – 1997. – V. 51. – № 5. – P. 286–296. doi: 10.1038/sj.ejcn.1600378
- Wirsam, B. The use of fuzzy logic in nutrition / B. Wirsam, E. O. Uthus // The Journal of Nutrition. – 1996. – V. 126 (9). – P. 2337S-2341S. doi: 10.1093/jn/126.suppl_9.2337S
Supplementary files
