Accurate Multiclass Fire Segmentation: Approaches, Neural Networks, and Segmentation Schemes
- Authors: Bochkov V.S.1, Kataeva L.Y.1, Maslennikov D.A.1
-
Affiliations:
- R. E. Alekseev Nizhny Novgorod State Technical University
- Issue: No 3 (2024)
- Pages: 71-86
- Section: Intelligent Planning and Control
- URL: https://journal-vniispk.ru/2071-8594/article/view/265360
- DOI: https://doi.org/10.14357/20718594240306
- EDN: https://elibrary.ru/JJLEUQ
- ID: 265360
Cite item
Full Text
Abstract
The paper presents a solution to the problem of multiclass flame segmentation with separation by combustion color. The mathematical problems of partial (without separation of the background class into a separate component of the search vector) and full (with separation) segmentation are formulated. A comparison of convolutional neural network methods of UNet, Deeplab and their modern variations, including the wUUNet method developed specifically for the problem under consideration, is carried out. The paper emphasizes the influence of the size of the computation matrix of segmentation computations with the original frame. Both lossy (compressing the frame to the size of the computation matrix and then decompressing it into the original frame) and lossless (applying a single-window frame sizing scheme or multi-window schemes for partitioning the frame into a grid of sub-areas) segmentation schemes are proposed. The best segmentation methods and schemes in terms of quality are selected.
About the authors
Vladimir S. Bochkov
R. E. Alekseev Nizhny Novgorod State Technical University
Author for correspondence.
Email: vladimir2612@bk.ru
Postgraduate Student
Russian Federation, Nizhny NovgorodLilia Yu. Kataeva
R. E. Alekseev Nizhny Novgorod State Technical University
Email: kataeval2010@mail.ru
Doctor of Physical and Mathematical Sciences, Professor
Russian Federation, Nizhny NovgorodDmitry A. Maslennikov
R. E. Alekseev Nizhny Novgorod State Technical University
Email: dmitrymaslennikov@mail.ru
Candidate of Physical and Mathematical Sciences, Associate Professor
Russian Federation, Nizhny NovgorodReferences
- Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation // 18th international conference. Medical image computing and computer-assisted intervention–MICCAI 2015. Proceedings, part III 18. Munich, Germany: Springer International Publishing, 2015. P. 234-241.
- Chen L. C. et al. Encoder-decoder with atrous separable convolution for semantic image segmentation // Proceedings of the European conference on computer vision (ECCV), 2018. P. 801-818.
- Bochkov V. S., Kataeva L. Y. WUUNET: Advanced fully convolutional neural network for multiclass fire segmentation // Symmetry. 2021. V. 13. No 1. P. 98.
- Saponara S., Elhanashi A., Gagliardi A. Real-time video fire/smoke detection based on CNN in antifire surveillance systems // Journal of Real-Time Image Processing. 2021. V. 18. P. 889-900.
- Chen X. et al. Wildland fire detection and monitoring using a drone-collected RGB/IR image dataset // IEEE Access. 2022. V. 10. P. 121301-121317.
- Dogan S. et al. Automated accurate fire detection system using ensemble pretrained residual network // Expert Systems with Applications. 2022. V. 203. P. 117407.
- Xue Z., Lin H., Wang F. A small target forest fire detection model based on YOLOv5 improvement // Forests. 2022. V. 13. No 8. P. 1332.
- Wang Z. et al. A novel fire detection approach based on CNN-SVM using tensorflow // 13th International Conference “Intelligent Computing Methodologies”, ICIC 2017. Proceedings, Part III 13. Liverpool, UK: Springer International Publishing, 2017. P. 682-693.
- Wang Z., Peng T., Lu Z. Comparative research on forest fire image segmentation algorithms based on fully convolutional neural networks // Forests. 2022. V. 13. No 7. P. 1133.
- Perrolas G. et al. Scalable fire and smoke segmentation from aerial images using convolutional neural networks and quad-tree search // Sensors. 2022. V. 22. No 5. P. 1701.
- Zhou Z. et al. Unet++: A nested u-net architecture for medical image segmentation // 4th International Workshop “Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support”, DLMIA 2018 and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, Proceedings 4. Springer International Publishing, 2018. P. 3-11.
- Lin T. Y. et al. Feature pyramid networks for object detection // Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. P. 2117-2125.
- Harkat H., Nascimento J., Bernardino A. Fire segmentation using a DeepLabv3+ architecture // Image and signal processing for remote sensing XXVI. SPIE, 2020. V. 11533. P. 134-145.
- Kingma D. P., Ba J. Adam: A method for stochastic optimization // arXiv preprint arXiv:1412.6980. 2014.
- Loshchilov I., Hutter F. Sgdr: Stochastic gradient descent with warm restarts // arXiv preprint arXiv:1608.03983. 2016.
- Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift // International conference on machine learning. pmlr, 2015. P. 448-456.
- Jaccard P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura // Bulletin de la Société Vaudoise des Sciences Naturelles. 1901. V. 37. P. 547-579.
- Zhu Y. et al. An efficient bicubic interpolation implementation for real-time image processing using hybrid computing // Journal of Real-Time Image Processing. 2022. V. 19. No 6. P. 1211-1223.
Supplementary files
