Predictive Analytics System for the Technical Condition of a Sinter Extractor Using Artificial Intelligence Methods

Cover Page

Cite item

Full Text

Abstract

The article describes approaches to building a software system that allows predicting possible failures and malfunctions of industrial equipment based on data on its condition, which will significantly affect the safety of work and the effective functioning of the enterprise. For the task of predicting equipment failures, a model based on "soft voting" between three algorithms with different approaches to classification is proposed: convolutional neural network, logistic regression and the support vector method. A model based on an isolating forest algorithm and an LSTM-based neural network is proposed to predict failures. A web service has been developed that implements the main functions of a predictive analytics system based on artificial intelligence methods: monitoring the technical condition of the excavators in real time, statistical analysis of malfunctions, fault prediction and model training.

About the authors

Artyom V. Chernukhin

D. I. Mendeleev Russian University of Chemical Technology

Author for correspondence.
Email: chernukhin.a.v@muctr.ru

Postgraduate Student, Department of Cybernetics of Chemical and Technological Processes

Russian Federation, Moscow

Elizaveta A. Bogdanova

M. V. Lomonosov Moscow State University

Email: eabogdanova.bioinf@gmail.com

Postgraduate Student, Department of Bioengineering

Russian Federation, Moscow

Tatiana V. Savitskaya

D. I. Mendeleev Russian University of Chemical Technology

Email: savitskaia.t.v@muctr.ru

Doctor of Technical Sciences, Professor, Department of Cybernetics of Chemical and Technological Processes

Russian Federation, Moscow

Dmitry G. Kulakov

D. I. Mendeleev Russian University of Chemical Technology

Email: dimacreator1998@gmail.com

Programmer Engineer, Master’s Student, Department of Information Computer Technology

Russian Federation, Moscow

Ilya R. Pavlov

D. I. Mendeleev Russian University of Chemical Technology

Email: ilyapavlo667@gmail.com

Programmer Engineer, Master’s Student, Department of Information Computer Technology

Russian Federation, Moscow

References

  1. Alimam H, Mazzuto G, Ortenzi M, Ciarapica FE, Bevilacqua M. Intelligent Retrofitting Paradigm for Conventional Machines towards the Digital Triplet Hierarchy // Sustainability. 2023. V. 15. No 2. P. 1441.
  2. Kuzmin V. V., Kosov D. S., Novikov A. L., Ivashchenko A.V. The system of forecasting failures of equipment of industrial enterprises // Reliability and quality of complex systems. 2015. V. 3 No. 11. P. 87-90.
  3. Bhakta K., Sikder N., Al Nahid A., Islam M.M. Fault Diagnosis of Induction Motor Bearing Using Cepstrum-based Preprocessing and Ensemble Learning Algorithm // Proceedings of the International Conference on Electrical, Computer and Communication Engineering. (ECCE). 2019. P. 1–6.
  4. Ivanov A. A. Automation of technological processes and productions // Infra-M 2018. P. 224.
  5. Okley P.I. Prognozirovaniye ostatochnogo resursa i veroyatnosti otkaza oborudovaniya yavlyayetsya osnovoy razrabotki proizvodstvennoy programmy remontnykh rabot teploelektrostantsii [Forecasting the residual life and the probability of equipment failure is the basis for designing a production program for repair work of a thermal power plant] // Controlling. 2017. No 65. P. 54–56.
  6. Nan X, Zhang B, Liu C, Gui Z, Yin X. Multi-Modal Learning-Based Equipment Fault Prediction in the Internet of Things // Sensors. 2022. V. 22. No 18. P. 6722.
  7. Kuzmin V. V., Kosov D. S., Novikov A. L., Ivashchenko A.V. Intelligent technologies for diagnostics of industrial equipment // Reliability and quality: proceedings of the International Symposium. 2015. V. 2. P. 28-29.
  8. Haixin Lv., Jinglong Chen., Tong-Lin Pan., Tianci Zhang., Yong Feng., Shen Liu. Attention Mechanism in Intelligent Fault Diagnosis of Machinery: A Review of Technique and Application // Measurement. 2022. V. 199. P. 111594-111594.
  9. Borovsky A.S. Nechetkaya situatsionnaya set' dlya otsenki proyektnogo riska otkaza oborudovaniya [Fuzzy situational network for assessing the design risk of equipment failure] // Proceedings of the Institute of System Analysis of the Russian Academy of Sciences. 2018. No 68. P. 87–93.
  10. Oliver Cromwell., Zifei Xu., Zifei Xu., Xuan Mei., Xinyu Wang., Minnan Yue., Jiang-Tao Jin., Yang Yang., Chun Li. Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors // Renewable Energy. 2022. V. 182. P. 615-626.
  11. Antonov A.V. Metodika statisticheskogo analiza dannykh ob otkazakh oborudovaniya AES v usloviyakh neodnorodnogo potoka sobytiy [Methodology for statistical analysis of data on NPP equipment failures under conditions of a heterogeneous flow of events] // News from universities. Nuclear energy. 2016. No 3. P. 20–29.
  12. Nurullah Yüksel, Hüseyin Rıza Börklü, Hüseyin Kürşad Sezer, Olcay Ersel Canyurt. Review of artificial intelligence applications in engineering design perspective // Engineering Applications of Artificial Intelligence. 2023. V. 118. 105697.
  13. Mao W., Feng W., Liu Y., Zhang D., Liang X. A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis // Mechanical Systems and Signal Processing. 2021. V. 150. P. 107233.
  14. Ivanov V.K., Vinogradova N.V., Palyukh B.V., Sotnikov A.N. Sovremennyye napravleniya razvitiya i oblasti primeneniya teorii Dempstera-Shafera [Modern directions of development and areas of application of the Dempster-Shafer theory] // Artificial Intelligence and Decision Making. 2018. No 4. P. 32–42.
  15. Jenis J., Ondriga J., Hrcek S., Brumercik F., Cuchor M., Sadovsky E. Engineering Applications of Artificial Intelligence in Mechanical Design and Optimization // Machines. 2023. V. 11. No 6. P. 577.
  16. Hossain M.L., Abu-Siada A., Muyeen S.M. Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review // Energies. 2018. V. 11. No 5. P. 1309.
  17. Xiao C, Liu Z, Zhang T, Zhang X. Deep Learning Method for Fault Detection of Wind Turbine Converter // Applied Sciences. 2021. V. 11. No 3. 1280.
  18. Antonov A.V. Prognozirovaniye na osnove iskusstvennoy neyronnoy seti vtorogo pokoleniya dlya podderzhki prinyatiya resheniy v osobo znachimykh situatsiyakh [Forecasting based on a second-generation artificial neural network to support decision-making in critical situations] // Software products and systems. 2022. No 3. P. 384–395.
  19. Rahman M.A., Saleh T., Jahan M.P., McGarry C., Chaudhari A., Huang R., Tauhiduzzaman M., Ahmed A., Mahmud A.A., Bhuiyan M.S., et al. Review of Intelligence for Additive and Subtractive Manufacturing: Current Status and Future Prospects // Micromachines. 2023. V. 14. No 3. P. 508.
  20. Namuduri S., Narayanan B.N., Davuluru V.S.P., Burton L., Bhansali S. Deep learning methods for sensor based predictive maintenance and future perspectives for electrochemical sensors // Journal of The Electrochemical Society. 2020. V. 167. P. 037552.
  21. Mahesh K. Singh, Sanjeev Kumar, Durgesh Nandan. Faulty voice diagnosis of automotive gearbox based on acoustic feature extraction and classification technique // Journal of Engineering Research. 2023. V. 11. P. 100051.
  22. Pietrangeli I., Mazzuto G., Ciarapica F.E., Bevilacqua M. Smart Retrofit: An Innovative and Sustainable Solution // Machines. 2023. V. 11. No 5. P. 523.
  23. Zvonarev S. L., Zubko A. I. On possible causes of rolling bearing failures // Bulletin of the Samara State Aerospace University named after Academician S.P. Korolev. 2012. V. 3-3. No 34. P. 16-22.
  24. Ismagilov R. N., Gareev R. R., Yamaliev V. U., Matsibora A. A. Forecasting the residual life of the bearing by the vibration level of the mechanism // The Oil and Gas exposition. 2015. V 3. No 42. P. 65-68.
  25. Wang A., Wang J. Temperature distribution and scuffing of tapered roller bearing // Chinese Journal of Mechanical Engineering. 2014. V. 27, P. 1272–1279.
  26. Biryukov R. V., Kiselev Yu. V. Temperature diagnostics of rotary bearings of gas turbine engines // Scientific bulletin of the Moscow State Technical University of Civil Aviation. 2014. No 205. P. 55-61.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».