Nomenclature Names Extraction from English and Russian-Language Scientific and Technical Texts

Cover Page

Cite item

Full Text

Abstract

The article proposes a method of extracting English and Russian-language nomenclature names from scientific and technical texts on the basis of their structural models. It is noted that nowadays a large number of approaches, methods and software tools for automatic processing of terminological units in natural language texts have been developed, but they do not take into account nomenclature names as a special class of special vocabulary. Their structural and semantic features are analyzed, and on the basis of the analysis models of English and Russian-language nomenclature names are created. A method of automatic extraction of nomenclature names from English and Russian-language scientific and technical texts is proposed. The results of the research can be used in the development of various systems of processing scientific and technical texts, markup of special corpuses, collection of linguistic material in the creation of terminological dictionaries and databases by taking into account a larger number of models of special vocabulary and the use of methods of processing scientific and technical texts in Russian and English.

About the authors

Yulia I. Butenko

N. E. Bauman Moscow State Technical University

Author for correspondence.
Email: iubutenko@bmstu.ru

Candidate of Technical Sciences, Associate Professor, Department of Theoretical Informatics and Computer Technologies

Russian Federation, Moscow

References

  1. Grinev-Grinevich V.V., Sorokina E.A., Molchanova M.A. Terminovedenie [Terminology Studies]. Izd. 3-e, ispr. i dop. Moscow: LENAND, 2023.
  2. Lang C. et al. Transforming Term Extraction: Transformer-Based Approaches to Multilingual Term Extraction Across Domains. Findings of the Association for Computational Linguistics // ACL-IJCNLP-2021. 2021, P 3607-3620.
  3. Citron D., Ginsparg P. Patterns of text reuse in a scientific corpus // PNAS. 2015. P. 25-30
  4. Simon, N.I., Kešelj, V. Automatic term extraction in technical domain using part-of-speech and common-word features // Proceedings of the ACM Symposium on Document Engineering. 2018. P. 1-4.
  5. Namestnikov A.M., Fillipov A.A., Shigabutdinov I.M. Podhod k izvlecheniyu mnogoslovnyh terminov iz tekstov na estestvennom yazyke s primeneniem sintaksicheskih shablonov [The Extraction of Terms Consisting of Several Words from Texts in Natural Languages using the Syntactic Patterns] // Avtomatizaciya processov upravleniya [Automation Control of Processes]. 2021. No.3(65). P. 87-95.
  6. Klyshinskij E.S., Kochetkova N.A. Metod vydeleniya kollokacij s ispol'zovaniem stepennogo pokazatelya v raspredelenii Cipfa [Method of Collocation Extraction Using the Stepped Index in the Zypf Distribution] // Novye informacionnye tekhnologii v avtomatizirovannyh sistemah [New Information Technologies in Automatic Systems]. 2018. No. 21. P. 220-225.
  7. Nugumanova A., Akhmed-Zaki D., Mansurova M., Baiburin Y., Maulit A. NMF-based approach to automatic term extraction // Expert Systems with Applications. 2022. No. 199. P.117179.
  8. Kononenko I.S., Ahmadeeva I.R., Sidorova E.A., Shestakov V.K. Problemy izvlecheniya terminologicheskogo yadra predmetnoj oblasti iz elektronnyh enciklopedicheskih slovarej [Problems Of Extracting Terminological Core of the Subject Domain from Electronic Encyclopedic Dictionaries] // Sistemnaya informatika [System Informatics]. 2018. No. 13. P. 49-75.
  9. Bolshakova E.I., Loukashevich N.V., Nokel M.A. Izvlechenie odnoslovnyh terminov iz tekstovyh kollekcij na osnove metodov mashinnogo obucheniya [Single-Word Term Extraction from Text Collections based on Machine Learning] // Informacionnye tekhnologii [Information technologies]. 2013. No. 7. P. 31-36.
  10. Abuzayed, A., Al-Khalifa H. BERT for Arabic Topic Modeling: An experimental Study on BERTopic Technique // Procedia Computer Science. 2021. No. 189, P. 191–194.
  11. Dubrovskij, D. I., Sergeev S.F. Metodologicheskie problemy ocenki generativnogo iskusstvennogo intellekta [Methodological problems of evaluation of generative artificial intelligence] // Iskusstvennyj intellekt. Teoriya i praktika. 2023. No. 3(3). P. 2-10.
  12. Kuznecov I.O. Avtomaticheskoe izvlechenie dvuslovnyh terminov po tematike «Nanotekhnologii v medicine» na osnove korpusnyh dannyh [Automatic Extraction of TwoWord Terms on the Subject "Nanotechnologies in Medicine" on the Basis of Corpus Data] // Nauchno-tekhnicheskaya informaciya. Seriya 2. Informacionnye processy i systemy [Scientific and Technical Information. Series 2. Information Processes and Systems]. 2013. No. 5. P. 25-33.
  13. Bruches E.P., Batura T.V. Metod avtomaticheskogo izvlecheniya terminov iz nauchnyh statej na osnove slabo kontroliruemogo obucheniya [Method for Automatic Term Extraction from Scientific Articles Based on Weak Supervision] // Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Informacionnye tekhnologii [Vestnik NSU. Series: Information Technologies]. 2021. T.19. No. 2. P.5-16.
  14. Lossio-Ventura J.A., Jonquet C., Roche, M. et al. Biomedical term extraction: overview and a new methodology // Inf Retrieval. 2016. No. 19, P. 59–99.
  15. Kochetkova N.A., Ermakov P.D. Metod izvlecheniya odnoslovnyh terminov na osnove statisticheskogo raspredeleniya slov vnutri konteksta [Method for Extracting SingleWord Terms Based on the Statistical Distribution of Words Within a Context] // Nauchno-tekhnicheskaya informaciya. Seriya 2. Informacionnye processy i sistemy [Scientific and Technical Information. Series 2. Information Processes and Systems]. 2017. No. 1. P. 23-28.
  16. Biziukova N.Y., Tarasova O.A., Rudik A.V. et al. Automatic Recognition of Chemical Entity Mentions in Texts of Scientific Publications // Automatic Documentation and Mathematical Linguistics. 2020. No.54. P. 306–315.
  17. Terryn A. R., Host V., Lefever E. In no uncertain terms: a dataset for monolingual and multilingual automatic term extraction from comparable corpora // Language Resources and Evaluation. 2020. No. 54.2. P. 385-418.
  18. Cisun S., Shelov S.D. O klassifikacii nomenov i nomenklaturnyh naimenovanij (na materiale naimenovanij tovarov) [On the Classification of Nomena and Nomenclatural Names (on the Material of Names of Goods)] // Nauchno-tekhnicheskaya informaciya: Seriya 2. Informacionnye processy i sistemy [Scientific and Technical Information. Series 2. Information Processes and Systems]. 2015. No. 6. P. 37-44.
  19. Lejchik V.M. Terminovedenie: Predmet, metody, struktura [Terminology studies: Subject, methods, structure]. Izd. 4-e. Moscow.: Knizhnyj dom ≪LIBROKOM≫. 2009.
  20. Shufang S., Shelov S.D. Nomenklaturnye naimenovaniya kak element kitajskoj nauchnoj leksiki (na materiale yazykoznaniya i literaturovedeniya) [Nomenclature as f Part of Chinese Scientific Lexicon (on the Material of Terminology in Linguistics and Literary Critics)] // Vestnik SanktPeterburgskogo Universiteta Vostokovedenie i Afrikanistika. 2014. No. 3. P. 5-16.
  21. Butenko Iu.I. Stroganov Yu.V., Sapozhkov A.M. Metod izvlecheniya russkoyazychnyh mnogokomponentnyh terminov v korpuse nauchno-tekhnicheskih tekstov [Method for the Extraction of Russian Language Multicomponent Terms from Scientific and Technical Texts] // Prikladnaya informatika [Applied Informatics], 2021, No. 6. P. 21-27.
  22. Butenko Iu.I. Stroganov Yu. V. Sapozhkov A. M. Sistema izvlecheniya mnogokomponentnyh terminov i ih perevodnyh ekvivalentov iz parallel'nyh nauchno-tekhnicheskih tekstov [System for Extracting Multi-Component Terms and their Translation Equivalents from Parallel Scientific and Technical Texts] // Nauchno-tekhnicheskaya informaciya: Seriya 2. Informacionnye processy i sistemy [Scientific and Technical Information. Series 2. Information Processes and Systems]. 2022. No.9. P. 12-21.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».