Fuzzy-Random Processes with Orthogonal and Independent Increments
- Authors: Khatskevich V.L.1, Makhinova O.A.1
-
Affiliations:
- Air Force Academy named after N.E. Zhukovsky and Y.U. Gagarin
- Issue: No 4 (2023)
- Pages: 38-48
- Section: Computational Intelligence
- URL: https://journal-vniispk.ru/2071-8594/article/view/269742
- DOI: https://doi.org/10.14357/20718594230404
- EDN: https://elibrary.ru/SNMXIX
- ID: 269742
Cite item
Full Text
Abstract
In this paper, random processes with fuzzy states and continuous time are investigated. The main attention is paid to the class of fuzzy random processes with orthogonal and independent increments. The characteristic properties of the variances and covariance functions of such processes are established. Gaussian and Wiener fuzzy random processes, which are analogs of the corresponding real random processes, are considered. The obtained results are based on the properties of fuzzy random variables and the classical results of the theory of real random processes with orthogonal and independent increments. Examples characterize the possibility of applying the developed theory to fuzzy-random processes of a triangular type.
About the authors
Vladimir L. Khatskevich
Air Force Academy named after N.E. Zhukovsky and Y.U. Gagarin
Author for correspondence.
Email: vlkhats@mail.ru
Doctor of Technical Sciences, Professor of the Department of Mathematics
Russian Federation, VoronezhOlga A. Makhinova
Air Force Academy named after N.E. Zhukovsky and Y.U. Gagarin
Email: olga.maxinova@list.ru
Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Mathematics
Russian Federation, VoronezhReferences
- Khatskevich V.L., Makhinova O.A. Chislovye harakteristiki nechetko-sluchajnyh processov [Numerical characteristics of fuzzy random processes] // Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decision-making]. 2023. No 1. P. 32-41.
- Puri M. L., Ralesku D.A. Fuzzy random variables // Journal of Mathematical Analysis and Applications. 1986. No 114. P. 409-422.
- Feng Y., Hu. L., Shu H. The variance and covariance of fuzzy random variables // Fuzzy Sets and Systems. 2001. No 120. P. 487-497.
- H.T. Nguyen and B. Wu. Fundamentals of Statistics with Fuzzy Data // Springer-Verlag. Berlin: Heidelberg. 2006.
- Shvedov A.S. Ocenivanie srednih i kovariacij nechetkosluchajnyh velichin [Estimation of averages and covariances of fuzzy random variables] // Prikladnaya ekonometrika [Applied Econometrics]. 2016. P. 121-138.
- Rozanov Yu.A. Teoriya veroyatnostej, sluchajnye processy i matematicheskaya statistika [Probability theory, random processes and mathematical statistics]. Moscow: Nauka, 1985.
- Bulinsky A.V., Shiryaev A.N. Teoriya sluchajnyh processov [Theory of random processes]. Moscow: Fizmatlit, 2005.
- Demenkov N.P., Mikrin E.A., Mochalov I.A. Markovskie i polumarkovskie processy s nechetkimi sostoyaniyami. CHast' 1. Markovskie processy [Markov and semi-Markov processes with fuzzy states. Part 1. Markov processes] // Informacionnye tekhnologii [Information technology]. 2020.
- V. 26. No. 6. P. 323-334.
- Liu Y., Zhu Q., Fan X. Event-Triggered Adaptive Fuzzy Control for Stochastic Nonlinear Time-delay Systems // Fuzzy Sets and Systems. 2023. V. 452. Issue C. P. 42-60.
- Hao Shen, Jiacheng Wu, Feng Li, Xiangyong Chen, Jing Wang. Fuzzy multi-objective fault-tolerant control for nonlinear Markov jump singularly perturbed system with persistent dwell-time switched transition probabilities // Fuzzy sets and systems. Cjan. 2023. V. 452. P. 131-148.
- Averkin A.N. Nechetkie mnozhestva v modelyah upravleniya i iskusstvennogo intellekta [Fuzzy sets in control and artificial intelligence models]. Moscow: Nauka, 1986.
- Piegat A. Nechetkoe modelirovanie i upravlenie [Fuzzy modeling and control]. Moscow: BINOM. Laboratoriya znanij, 2015.
- Diamond P., Kloeden P. Metric Spaces of Fuzzy Sets // Fuzzy Sets and Systems. 1990. V. 35. Issue 2. P. 241-249.
- Khatskevich V.L. O nekotoryh svojstvah nechetkih ozhidanij i nelinejnyh nechetkih ozhidanij nechetko-sluchajnyh velichin [On some properties of fuzzy expectations and nonlinear fuzzy expectations of fuzzy random variables] // Izvestiya vuzov. Matematika [News of universities. Mathematics]. 2022. No 11. P. 1-13.
- Dubois D., Prade H. The mean value of fuzzy number // Fuzzy sets and systems. 1987. No 24. P. 279-300.
- Yazenin A.V. Osnovnye ponyatiya teorii vozmozhnostej [Basic concepts of the theory of possibilities]. Moscow: Fizmatlit, 2016.
- Miller B.M., Pankov A.R. Teoriya sluchajnyh processov v primerah i zadachah [Theory of random processes in examples and problems]. Moscow: Fizmatlit, 2002.
- Y. Ogura, H.T. Nguyen. Gaussian processes and martingales for fuzzy valued variables with continuous parameter // Information Sciences. 2001. V. 133. Issue 1. P. 7-21.
- Sh. Li, Li Guan. Fuzzy set-valued Gaussian processes and Brownian motions // Information Sciences. 2007. V. 177. Issue 16. P. 3251-3259.
Supplementary files
