Application of Pareto Frontier in Searching for Compromise Rules of Lake Baikal's Level Control
- Authors: Lotov A.V.1, Ryabikov A.I.1, Bolgov M.V.2, Buber A.L.3
-
Affiliations:
- Computer Science and Control Federal Research Center of the Russian Academy of Sciences
- Institute for Water Problems of the Russian Academy of Sciences
- Kostyakov All-Russian Research Institute of Hydraulic Engineering and Land Reclamation
- Issue: No 3 (2022)
- Pages: 72-87
- Section: Optimal and Rational Choice
- URL: https://journal-vniispk.ru/2071-8594/article/view/270473
- DOI: https://doi.org/10.14357/20718594220306
- ID: 270473
Cite item
Full Text
Abstract
Computer decision support technique for the search for compromise rules of Lake Baikal's level control and of Angara River water resovoir cascade control is described. The proposed technique takes into account presence of contradictory requirements that give rise to the vector of decision criteria. The technique is based on dialogue Pareto frontier visualization. It supports the experts in the process of searching for efficient tradeoff among requirements and helps to justify their choice. By using the technique, a compromise cascade control rule was constructed that corresponds to all principle requirements and is used now as a basis of governmental documents concerning water resources control of the Angara River basin.
About the authors
Alexander V. Lotov
Computer Science and Control Federal Research Center of the Russian Academy of Sciences
Author for correspondence.
Email: avlotov@yandex.ru
Doctor of Physical and Mathematical Sciences, Professor, Chief Researcher
Russian Federation, MoscowAndrey I. Ryabikov
Computer Science and Control Federal Research Center of the Russian Academy of Sciences
Email: ariabikov@gmail.com
Junior Researcher
Russian Federation, MoscowMikhail V. Bolgov
Institute for Water Problems of the Russian Academy of Sciences
Email: bolgovmv@mail.ru
Doctor of Technical Sciences, Head of the Laboratory
Russian Federation, MoscowAlexander L. Buber
Kostyakov All-Russian Research Institute of Hydraulic Engineering and Land Reclamation
Email: buber49@yandex.ru
Head of the Department
Russian Federation, MoscowReferences
- Lotov A.V., Bushenkov V.A., Kamenev G.K., Chernykh O.L. 1997. Komp’uter i poisk kompromissa. Metod dostizhimykh celej. [Computer and the search for compromise. Feasible goals method]. Moscow: Nauka Publishers.
- Lotov A.V., Bushenkov V.A., Kamenev, G.K. 2004. Interactive Decision Maps. Approximation and Visualization of Pareto Frontier. Boston: Kluwer Academic Publishers. 310 p.
- Asarin A.E., Bestuzheva K.N. 1986. Vodnoenergeticheskie raschety [Water energy calculation]. Moscow: Energoatomizdat. 224 p.
- Bolgov M.V., Sarmanov I.O., Sarmanov O.V. 2009. Markowskie processy v gidrologii [Markov processes in hydrology]. Moscow: Institute for Water Problems, Russian Academy of Sciences. 211 p.
- Ryabikov A.I. 2019. Skhodimost iterazionnykh processov v modeli kaskada vodokhranilizhch [Convergence of iterative processes in a resevoir cascade model], Vestnik Buryatskogo gosudarstvennogo universiteta. Matematika, informatika [Messenger of Burat state university. Mathematiks, computer science]. 4: 31-39.
- Agasandyan G.A. 1985. Algoritmy postroeniya dispetcherskikh pravil upravleniya dlya kaskadov vodokhranilizhch [Algorithms for constructing the release rules for reservoir cascades], Vodnye resursy [Water resources]. 5: 34-46.
- Ereshko F.I. 1998. Matematicheskie modeli I metody prinyatiya soglasovannykh reshenij v aktivnykh ierarkhicheskikh sistemakh [Mathematical models and methods of coordinated decision making in active hierarchical systems]. Dr. Hab. Thesis in technical sciences. Moscow: Institute for Control Problems, Russian Academy of Sciences.
- Podinovskij V.V., Nogin V.D. 2007. Pareto-optimalnye resheniya mnogokriterialnykh zadach [Pareto-optimal solutions of multi-criteria problems]. Moscow: Physmatlit. 255 p.
- Lotov A.V., Pospelova I.I. 2008. Mnogokriterialnye zadachi prinyatiya reshenij [Multicriteria decision making problems]. Moscow: MAKS Press. 197 p.
- Sawaragi, Y., Nakayama H., Tanino T. 1985. Theory of Multiobjective Optimization. Orlando: Academic Press
- Berezkin V.E., Kamenev G.K., Lotov A.V. 2006. Hybrid Adaptive Methods for Approximating a Nonconvex Multidimensional Pareto Frontier. Computational Mathematics and Mathematical Physics. 46(11): 1918-1931.
- Riabikov A.I. 2014. Ersatz Function Method for Minimizing a Finite-Valued Function on a Compact Set. Computational Mathematics and Mathematical Physics. 54(2): 206-1218.
- Du K.-L., Swamy M.N.S. 2016. Search and Optimization by Metaheuristics. Springer.
- Lotov A.V., Riabikov A.I. 2019. Simple Efficient Hybridization of Classic Global Optimization and Genetic Algorithms for Multiobjective Optimization. Computational Mathematics and Mathematical Physics. 59(10):1613-1625.
- Lotov A.V., Riabikov A.I. 2019. Launch pad method in multiextremal multiobjective optimization problems. Computational Mathematics and Mathematical Physics. 59(12): 2041-2056.
- Lotov A.V., Ryabikov A.I. 2021. Extended Launch Pad Method for the Pareto Frontier Approximation in Multiextremal Multiobjective Optimization Problems // Computational Mathematics and Mathematical Physics. 61(10): 1700-1710.
- Deb K., 2001. Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.
- Lotov A.V., Ryabikov A.I., Buber, A.L. 2019. A MultiCriteria Decision-Making Procedure with an Inherited Set of Starting Points of Local Optimization of the Scalarizing Functions. Scientific and Technical Information Processing. 46(5): 328-336.
Supplementary files
