Fuzzy metrics based on generators of Archimedean triangular norms of the class of rational functions
- Authors: Ledeneva T.M.1, Moiseeva T.A.1
-
Affiliations:
- Voronezh State University
- Issue: No 4 (2024)
- Pages: 30-44
- Section: Computational Intelligence
- URL: https://journal-vniispk.ru/2071-8594/article/view/278192
- DOI: https://doi.org/10.14357/20718594240403
- EDN: https://elibrary.ru/YVEWIF
- ID: 278192
Cite item
Full Text
Abstract
This paper presents the results related to the development of an approach for constructing parametric fuzzy metrics based on additive generators of strict triangular norms from the class of rational functions. The fuzzy metrics were tested on the problem of fuzzy clustering, characterized by the determination of the degree of membership for each object to each cluster, allowing for a more flexible grouping of objects within a given set. The conducted computational experiment convincingly demonstrates the superiority of the new fuzzy metrics compared to the Euclidean metric, taking into account well-known and widely used clustering quality criteria. The fuzzy approach allows “working” with approximate distance values, which is important in the presence of uncertainty, therefore, it can be viewed as an element of intelligent technologies that is advisable to use in the development of information systems for various purposes.
About the authors
Tatiana M. Ledeneva
Voronezh State University
Email: ledeneva-tm@yandex.ru
Doctor of technical sciences, professor, Head of Department
Russian Federation, VoronezhTatiana A. Moiseeva
Voronezh State University
Author for correspondence.
Email: tatiana.vsu@gmail.com
PhD student, tutor
Russian Federation, VoronezhReferences
- Wikipedia. Metric space // Electronic resource. URL: https://en.wikipedia.org/wiki/Metric_space#Pseudoquasimetrics (accessed 23.07.2024).
- Kaufmann A. Vvedenie v teoriy nechetkih mnozhestv [Introduction à la théorie des sous-ensembles flous à l'usage des ingénieurs]. М.: Radio I svyaz [Radio and communications], 1982.
- Hachumov M.V. Rasstoyaniya, metriki i klasternyj analiz [Distance, metrics and cluster analysis] // Iskusstvenniy intellekt i prinyatie resheniy [Artificial Intelligence and Decision Making]. 2012. No 1. P. 81-89.
- Narici L., Beckenstein E. Topological Vector Space. CRC Press, 2010.
- Moiseeva T.A., Ledeneva T.M. Generatsiya bazovykh znaniy na osnove nechetkoy klasterizatsii [Knowledge base generation based on fuzzy clustering] // Informacionnye tekhnologii i vychislitel'nye sistemy [Information technologies and computational systems]. 2023. No 1. P. 97-108.
- Kramosil I., Michálek J. Fuzzy Metrics and Statistical Metrics Spaces // Kybernetika. 1975. V. 11. No 5. P. 336-344.
- George A., Veeramani P. On some results of analysis for fuzzy metric spaces // Fuzzy Sets and Systems. 1997. V. 90. P. 365-368.
- De Baets B., Mesiar R. Metrics and t-equalities // Journal of Mathematical Analysis and Applications. 2002. V. 267. No 2. P. 531-547.
- Gregori V., Miñana J.-J., Morillas S. On completable fuzzy metric spaces // Fuzzy Sets and Systems. 2015. V. 267. P. 133-139.
- Miñana J.-J., Valero O. A duality relationship between fuzzy metrics and metrics // International Journal of General Systems. 2018. V. 47. No 6. P. 593-612.
- Wu X., Chen G. Answering an open question in fuzzy metric spaces // Fuzzy Sets and Systems. 2020. V. 390. P. 188-191.
- Grigorenko O.T., Miñana J.-J., Valero O. Two new methods to construct fuzzy metrics from metrics // Fuzzy Sets and Systems. 2023. V. 467. P. 108483.
- Demirci M. Topological properties of the class of generators of an indistinguishability operator // Fuzzy Sets and Systems. 2004. V. 143. No 3. P. 413-426.
- Ledeneva T. Additive generators of fuzzy operations in the form of linear fractional functions // Fuzzy Sets and Systems. 2020. V. 386. P. 1-24.
- Ledeneva T. New Family of Triangular Norms for Decreasing Generators in the Form of a Logarithm of a Linear Fractional Function // Fuzzy Sets and Systems. 2022. V. 427. P. 37-54.
- Ledeneva T. A parametric Family of Triangular Norms and Conorms with an Additive Generator in the Form of a Linear Fractional Function // Computation. 2023. V. 11. No 8. P. 155.
- Klement E.P., Mesiar R., Pap E. Triangular norms. Position paper I: basic analytical and algebraic properties // Fuzzy Sets and Systems. 2004. V. 143. No 1. P. 5-26.
- Ralević N., Paunović M., Iricanin B. Fuzzy metric space and applications in image processing // Mathematica Montisnigri. 2020. V. 48. P. 103-117.
- Ledeneva T.M., Kaplieva N.A. Tranzitivnost' kak osoboe svojstvo nechetkih otnoshenij [Transitivity as a special property of fuzzy relations]. Voronezh: VSU, 2006.
- Klement E.P., Mesiar R., Pap E. Triangular norms. Position paper III: continuous t-norms // Fuzzy Sets and Systems. 2004. V. 145. No 3. P. 439-454.
- Pinheiro D. N., Aloise D., Blanchard S. J. Convex fuzzy k-medoids clustering // Fuzzy Sets and Systems. 2020. V. 389. P. 66-92.
- Bezdek, J.C. Pattern recognition with fuzzy objective function algorithms. N.Y.: Kluwer Academic Publishers, 1981.
- Barsegyan A. A., Kupriyanov M. S., Holod I. I., Tess M. D., Elizarov S. I.. Analiz dannyh i processov: ucheb. posobie [Data and process analysis: a textbook]. SPb.: BHV-Peterburg, 2009.
- Xie X.L., Beni G. A Validity Measure for Fuzzy Clustering // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991. V. 13. No 4. P. 841–847.
- Elizarov S.I., Kupriyanov M.S. Problema opredeleniya kolichestva klasterov pri ispol'zovanii metodov razbieniya [The problem of determining the number of clusters when using partitioning methods] // Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [News ofhigher educational
- H. Řezanková. Different approaches to the silhouette coefficient calculation in cluster validation // 21st International Scientific Conference AMSE Applications of Mathematics and Statistics in Economics. Kutná Hora, Czech Republic. 2018. P. 259-268.
- Ledeneva T.M., Podvalniy S.L. Agregirovaniye informatsii v otsenochnykh kompaniyakh [The aggregation of information in the evaluation system] // Vestnik VGU. Seriya: Sistemnyj analiz i informacionnye tekhnologii [VSU Bulletin. Series: System Analysis and Information Technologies]. 2016. No 4. P. 155-164.
- Yager R.R. Families of OWA operators // Fuzzy Sets and Systems. 2004. V. 59. No 2. P. 125-148.
- Ledeneva T.M., Levkina I.N. Obzor osnovnyh klassov operatorov poryadkovogo vzveshennogo agregirovaniya [Overview of the main classes of ordinal weighted aggregation operators] // Vestnik VGU. Seriya: Sistemnyj analiz i informacionnye tekhnologii [VSU Bulletin. Series: System Analysis and Information Technologies]. 2022. No 1. P. 5-31.
- Zarghami M., Szidarovszky F. Revising the OWA operator for multi criteria decision making problem under uncertainty // European Joupnal of Operational Research. 2009. V. 198. P. 259–265.
Supplementary files
