Method of structural synthesis and parametric identification of machine vision system

Cover Page

Cite item

Full Text

Abstract

The paper presents research materials on the development of mathematical models of machine vision systems using the theory of modified descriptive image algebras. The basic definitions of mathematical objects and operations over them, which are used in structural synthesis of models, are formulated. The general formulation of parametric identification of the machine vision system model is given. Mathematical models of machine vision systems for three tasks of measuring the area of objects of different nature are described. Recommendations on statistical estimation of values of variation parameters of the model at processing of set of images are given.

About the authors

Almaz R. Iskhakov

M. Akmulla Bashkir State Pedagogical University

Author for correspondence.
Email: intellab@mail.ru

Candidate of Physical and Mathematical Sciences, Associate Professor

Russian Federation, Ufa

Ramil F. Malikov

M. Akmulla Bashkir State Pedagogical University

Email: rfmalikov@mail.ru

Doctor of Physical and Mathematical Sciences, Professor, Head of the Laboratory "System Analysis and Mathematical Modeling"

Russian Federation, Ufa

References

  1. Iskhakov A. R., Malikov R. F. Modelirovanie sistem tekhnicheskogo zreniya v modifitsirovannykh deskriptivnykh algebrakh izobrazheniy [Modeling of technical vision systems in modified descriptive image algebras]. Ufa: BSPU named after M. Akmully, 2015.
  2. Iskhakov A. R. Metody matematicheskogo modelirovaniya obrabotki i analiza izobrazheniy v modifitsirovannykh deskriptivnykh algebrakh izobrazheniy: Dissertatsiya …kandidata fiziko-matematicheskikh nauk [Methods of mathematical modeling of image processing and analysis in modified descriptive image algebras. Dissertation for the degree of Candidate of Physical and Mathematical Sciences]. Chelyabinsk, 2017.
  3. Iskhakov A. R., Akbashev V. R. Structural Synthesis of the Computer Vision and Its Parametric Identification with Statistical Estimation of Variational Parameters // Journal of Computational and Engineering Mathematics. 2023. V. 10. No 1. P. 56-63.
  4. Iskhakov A. R., Malikov R. F. Calculation of Aircraft Area on Satellite Images by Genetic Algorithm // Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software. 2016. V. 9. No 4. P. 148-154.
  5. Gurevich I. B., Yashina V. V. Descriptive Image Analysis: Genesis and Current Trends // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2017. V. 27. No 4. P. 653-674.
  6. Gurevich I. B., Yashina V. V. Descriptive Image Analysis: Part II. Descriptive Image Models // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2019. V. 29. No 4. P. 598-612.
  7. Gurevich I. B., Yashina V. V. Algebraic Interpretation of Image Analysis Operations // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2019. V. 29. No 3. P. 389-403
  8. Gurevich I. B., Yashina V. V. Descriptive Image Analysis: Part III. Multilevel Model for Algorithms and Initial Data Combining in Pattern Recognition // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2020. V. 30. No 3. P. 328-341.
  9. Gurevich I. B., Yashina V. V. Descriptive Image Analysis: Part IV. Information Structure for Generating Descriptive Algorithmic Schemes for Image Recognition // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2020. V. 30. No 4. P. 638-654.
  10. Gurevich I. B., Yashina V. V. Descriptive Models of Information Transformation Processes in Image Analysis // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2021. V. 31. No 3. P. 402-420..
  11. Gurevich I. B., Yashina V. V. On Modeling Descriptive Image Analysis Procedures on a Specialized Turing Machine // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2022. V. 32. No 3. P. 469-476.
  12. Matorin S. I., Mikhelev V. V. Sistemno-obektnyy determinantnyy analiz. Postroenie geneticheskoy i partitivnoy klassifikatsiy predmetnoy oblasti [System-object determinant analysis. The construction of genetic and partitive classifications of the subject area] // Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision making]. 2022. No 1. P. 26-34.
  13. Matorin S. I., Mikhelev V. V. Sistemno-obektnyy determinantnyy analiz. Partitivnaya klassifikatsiya s pomoshchyu formalno-semanticheskoy normativnoy sistemy [System-object determinant analysis. Portable classification using a formal semantic normative system] // Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision making]. 2022. No 2. P. 17-26.
  14. Zaboleeva-Zotova A. V., Petrovsky A. B. Formalizatsiya strukturnogo sinteza tekhnicheskikh sistem na nachalnom etape proektirovaniya [Formalization of the structural synthesis of technical systems at the initial design stage] // Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision making]. 2022. No 4. P. 44-54.
  15. Polyakov O. M., Rudnitskiy S. B. O svyazi modeli znaniy i zadachi raspoznavaniya obrazov [On the relationship between the knowledge model and the problem of pattern recognition] // Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision making]. 2023. No 3. P. 16-22.
  16. Kochurov B. I., Malikov R. F., Iskhakov A. R. i dr. Issledovanie dinamiki ploshchadi ozera Aslykul (Yuzhnoe Predurale) metodom obrabotki izobrazheniy kosmicheskikh snimkov na osnove algebraicheskogo podkhoda [Investigation of the dynamics of the area of Lake Aslykul (Southern Urals) by the method of image processing of satellite images based on an algebraic approach] // Teoreticheskaya i prikladnaya ekologiya [Theoretical and applied ecology]. 2021. No 1. P. 58-64.
  17. Iskhakov A. R. Metod strukturnogo sinteza sistemy tekhnicheskogo zreniya dlya zadachi izmereniya ploshchadi [A method of structural synthesis of a vision system for the task of measuring an area] // Prikladnaya informatika [Applied Computer Science]. 2022. V. 17. No 6 (102). P. 122-134.
  18. Kulikov L.Ya. Algebra i teoriya chisel: ucheb. posobie dlya pedagogicheskikh institutov [Algebra and number theory: a textbook for pedagogical institutes]. M.: Vyssh. Shkola [Higher Education], 1979.
  19. Medvedev V.S., Potemkin V.G. Neyronnye seti. MATLAB Pod obshch. Red. V.G. Potemkina [Neural networks. MATLAB 6. Under the general Editorship of V.G. Potemkin]. M.: DIALOG-MIFI, 2001.
  20. Panteleev A.V., Letova T.A. Metody optimizatsii v primerakh i zadachakh: Ucheb. Posobie [Optimization methods in examples and tasks: textbook]. 2-e izd., ispravl. M.: Vyssh. shk. [Higher Education], 2005.
  21. Reyzlin V.I. Chislennye metody optimizatsii: uchebnoe posobie [Numerical optimization methods: a textbook]. Tomskiy politekhnicheskiy universitet. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta [Publishing House of Tomsk Polytechnic University], 2011.
  22. Gatelyuk O. V., Manyukova N.V. Proverka statisticheskikh gipotez: uchebnoe posobie dlya vuzov [Statistical hypothesis testing: a textbook for universities]. Sankt-Peterburg: Lan, 2022.
  23. Zenkov A. V. Matematicheskaya statistika v zadachakh i uprazhneniyakh: uchebnoe posobie [Mathematical statistics in tasks and exercises: a textbook]. Moskva, Vologda: Infra-Inzheneriya [Moscow, Vologda: Infra-Engineering], 2022.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».