Automatic Lexical Adaptation of Russian Texts
- 作者: Nitsenko A.V.1, Shelepov V.Y.1, Bolshakova S.A.1
-
隶属关系:
- Institute of Artificial Intelligence Problems
- 期: 编号 1 (2025)
- 页面: 82-94
- 栏目: Analysis of Textual and Graphical Information
- URL: https://journal-vniispk.ru/2071-8594/article/view/293499
- DOI: https://doi.org/10.14357/20718594250107
- EDN: https://elibrary.ru/NJYPOD
- ID: 293499
如何引用文章
全文:
详细
The article describes a method for lexical simplification of Russian text, using a specially marked base of synonyms and a set of rules, which allows automatic lexical replacement of words and phrases with restoration of the correct syntax and preservation of the text semantics. To form a marked database of synonyms, dictionaries of synonyms that are in the public domain were used. To preserve semantics, an analysis and reduction of synonymous series was carried out, the frequency of members of the synonymous series was analyzed in order to select a dominant, and entries in dictionaries were marked and a mechanism for processing labels was proposed to comply with the syntax rules in a simplified text. A base of production rules has been developed to preserve the correct syntax after lexical adaptation of the text, allowing for the correct replacement of individual words, phrases with one word and phrases with a phrase.
作者简介
Artyom Nitsenko
Institute of Artificial Intelligence Problems
编辑信件的主要联系方式.
Email: nav_box@mail.ru
Candidate of technical sciences, Head of the Department of Speech Pattern Recognition
俄罗斯联邦, DonetskVladislav Shelepov
Institute of Artificial Intelligence Problems
Email: vladislav.shelepov2012@yandex.ru
Doctor of Physical and Mathematical Sciences, Professor, Chief Researcher, Department of Speech Pattern Recognition
俄罗斯联邦, DonetskSvetlana Bolshakova
Institute of Artificial Intelligence Problems
Email: svetlako@yandex.com
Junior Researcher, Department of Speech Pattern Recognition
俄罗斯联邦, Donetsk参考
- Coster W., Kauchak D. Simple English Wikipedia: a new text simplification task // Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011. Р. 665–669.
- Woodsend K., Lapata M. Wikisimple: Automatic simplification of Wikipedia articles // Proceedings of the National Conference on Artificial Intelligence. 2011. P. 927-932.
- De Belder J., Deschacht K., Moens M.F. Lexical simplification // Electronic resource. URL: https://www.researchgate.net/pro-file/Marie-Francine-Moens/publication/265205638_Lexical_Simplification/ links/54872b890cf289302e2ed53b/Lexical-Simplification.pdf (accessed 01.07.2024).
- De Belder J., Moens M.F. Text simplification for children // Proceedings of the SIGIR workshop on accessible search systems. ACM. 2010. P. 19-26.
- Hafizova E. I. Adaptacija slozhnosti tekstov i tekstovyh zadanij [Adapting the complexity of texts and text tasks] // Molodoj uchenyj [Young scientist]. 2021. No 12 (354). P. 266-268.
- Kim Y.S., Hullman J., Adar E. DeScipher: A Text Simplification Tool for Science Journalism // Electronic resource. URL: https://cond.org/cjdescipher.pdf (accessed 01.07.2024).
- Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L. et al. Attention is all you need // 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. P. 5998–6008.
- Devlin J., Chang M.-W., Lee K., Toutanova K. BERT: Pretraining of deep bidirectional transformers for language understanding // Proceedings of NAACL-HLT 2019. Minneapolis, Minnesota, Association for Computational Linguistics P. 4171–4186.
- Monteiro J., Aguiar M., Araújo S. Using a Pre-trained SimpleT5 Model for Text Simplification in a Limited Corpus // CLEF 2022 – Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy. CEUR Workshop Proceedings. CEUR-WS.org. 2022. P. 2826–2831
- Raffel C., Shazeer N., Roberts A., Lee K., Narang S. et al. Exploring the limits of transfer learning with a unified textto-text transformer // Journal of machine learning research. 2019. V. 21. P. 5485–5551.
- Fenogenova A. Text simplification with autoregressive models // Annual International Conference on Computational Linguistics and Intellectual Technologies, Dialogue 2021. Trudy konferentsii vypusk 20 [Proceedings.of the Annual International Conference on Computational Linguistics and Intellectual Technologies, Dialogue] Moscow:Rossiyskiy gosudarstvennyy gumanitarnyy universitet [Russian State University for the Humanities] 2021. P . 227-234.
- Liu Y., Gu J., Goyal N., Li X., Edunov S. et al. Multilingual denoising pre-training for neural machine translation // Transactions of the Association for Computational Linguistics. 2020. V. 8. P. 726–742.
- Lewis M., Liu Y., Goyal N. et al. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension // Proceedings of the 58thAnnual Meeting of the Association for Computational Linguistics. 2020. P. 7871–7880.
- Sakhovskiy A., Tutubalina E., Malykh V. et al. RuSimpleSentEval-2021 Shared Task: Evaluating Sentence Simplification for Russian // Annual International Conference on Computational Linguistics and Intellectual Technologies, Dialogue 2021. Trudy konferentsii vypusk 20 [Proceedings.of the Annual International Conference on Computational Linguistics and Intellectual Technologies, Dialogue] Moscow:Rossiyskiy gosudarstvennyy gumanitarnyy universitet [Russian State University for the Humanities] 2021. P. 607-617.
- Shatilov A. A., Rey A. I. Sentence simplification with ruGPT3 // Annual International Conference on Computational Linguistics and Intellectual Technologies, Dialogue 2021. Trudy konferentsii vypusk 20 [Proceedings.of the Annual International Conference on Computational Linguistics and Intellectual Technologies, Dialogue]. Moscow:Rossiyskiy gosudarstvennyy gumanitarnyy universitet [Russian State University for the Humanities] .2021. P. 618-625.
- Komleva E. P. Anastasyev D. G. Sentence Simplification for Russian using Transfer Learning Annual International Conference on Computational Linguistics and Intellectual Technologies, Dialogue 2021. Trudy konferentsii vypusk 20 [Proceedings.of the Annual International Conference on Computational Linguistics and Intellectual Technologies, Dialogue]. Moscow:Rossiyskiy gosudarstvennyy gumanitarnyy universitet [Russian State University for the Humanities] .2021.P. 1075-1080.
- Vasil'ev D.D., Pyataeva A.V. Ispol'zovanie yazykovyh modelej T5 dlya zadachi uproshcheniya teksta [Using T5 Language Models for Text Simplification Task] // Programmnye produkty i sistemy[Software Products and Systems]. 2023. V. 36. No 2. P. 228–236.
- Burstein J. The automated text adaptation tool // Proceedings of Human Language Technologies. The Annual Conference of the North American Chapter of the Association for Computational Linguistics. Demonstrations. Association for Computational Linguistics. 2007. P. 3-4.
- Aleksandrova Z. E. Slovar' sinonimov russkogo jazyka. Prakticheskij spravochnik [Russian synonym dictionary. A practical reference book]. Okolo 11 000 sinonimicheskih rjadov [About 11 000 synonymous rows]. 11 izd., pererab. i dop.[ 11th edition, revised and enlarged.] Moscow: Russkiy jazyk [Russian language]. 2001. 568 p.
- Ljashevskaja O. N., Sharov S. A. Chastotnyj slovar' sovremennogo russkogo jazyka (na materialah Nacional'nogo korpusa russkogo jazyka) [Frequency Dictionary of the Modern Russian Language (based on materials from the Russian National Corpus)]. Moscow: Izdatelskiy сentr «Azbukovnik» [Publishing center "Azbukovnik"]. 2009. 1090 p.
- Nacional'nyj korpus russkogo jazyka [Russian National Corpus] // Electronic resource. URL: http://ruscorpora.ru/ (data obraschenija: 01.07.2024).
- EASSE: Easier Automatic Sentence Simplification Evaluation / Fernando Alva-Manchego, Louis Martin, Carolina Scarton, Lucia Specia // Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). System Demonstrations. Hong Kong, China: Association for Computational Linguistics, 2019. P. 49–54. Access mode: https://www.aclweb.org/anthology/D19-3009.
- Shen L. LexicalRichness: A small module to compute textual lexical richness. 2022. URL: https://github.com/LSYS/lexicalrichness doi: 10.5281/zenodo.6607007
补充文件
