Method for assessing the effectiveness of the use of electromechanical transmissions of vehicles at the design stage



如何引用文章

全文:

详细

The vehicles equipped with electromechanical transmission due to the development of traction electric drive, as well as on-board electric energy storage became very prospective. However, at the stage of such vehicles design the difficulties associated with evaluating the energy efficiency of the developed vehicles, in particular, with the evaluation of the efficiency of traction electric vehicles arise. In this work, the authors propose a method for evaluating the efficiency of traction electric motors of newly developed electromechanical transmissions of transport vehicles, based on the construction of an empirical dependence approximating statistical data on the characteristics of existing electric motors. The data on electric motors from a number of manufacturers used in vehicle transmissions was studied for approximation. The article discusses the application of the developed method to design an algorithm for controlling the transmission of a wheeled vehicle, aimed at increasing its energy efficiency. The efficiency of the algorithm is confirmed by simulation of the dynamics of the vehicle, the initial data for the simulation were obtained during the traction-dynamic calculation. The developed simulation model together with the method of evaluating the efficiency of the electric motor made it possible to carry out a comparative assessment of the developed gearshift control algorithm and the gearshift approach, which does not take into account the dependence of the energy losses of the electric machine on the operating mode in cases of urban and mixed driving cycles. As criteria for assessing the effectiveness of the application of the developed law of control of an electromechanical transmission, the amount of energy spent on movement along a given cycle and the number of gear shifts on the route were used. The obtained results confirm the effectiveness of using the developed algorithm in the conditions of vehicle movement in an urban environment.

作者简介

B. Padalkin

Bauman Moscow State Technical University

Email: padalkin@bmstu.ru
PhD in Engineering Moscow, Russia

V. Ivanenkov

Bauman Moscow State Technical University

PhD in Engineering Moscow, Russia

B. Kositsyn

Bauman Moscow State Technical University

Email: kositsyn_b@bmstu.ru
PhD in Engineering Moscow, Russia

A. Stadukhin

Bauman Moscow State Technical University

PhD in Engineering Moscow, Russia

K. Balkovskiy

Bauman Moscow State Technical University

Moscow, Russia

参考

  1. Shoki Kosai, Masaki Nakanishi, Eiji Yamasue Vehicle energy efficiency evaluation from well-to-wheel lifecycle perspective, Transportation Research Part D: Transport and Environment, Volume 65, 2018, Pages 355-367, ISSN 1361-9209.
  2. Sangno R., Panigrahi S.P., Kumar S. (2020) Efficient Energy Management in Hybrid Electric Vehicles Using DRBF Networks. In: Sahana S., Bhattacharjee V. (eds) Advances in Computational Intelligence. Advances in Intelligent Systems and Computing, vol 988. Springer, Singapore.
  3. Gorelov V.A., Butarovich D.O., Staduhin A.A., Skotnikov G.I. Simulation-based identification of the parameters of a minibus hybrid powertrain (2019) IOP Conference Series: Materials Science and Engineering, 534 (1), статья № 012013, doi: 10.1088/1757-899X/534/1/012013.
  4. Srivastava S., Maurya S. Fuel efficiency optimization techniques in hybrid vehicle (2019) International Journal of Recent Technology and Engineering, 8 (3), pp. 6790-6799.
  5. Passalacqua M., Lanzarotto D., Repetto M., Vaccaro L., Bonfiglio A., Marchesoni M. Fuel Economy and EMS for a Series Hybrid Vehicle Based on Supercapacitor Storage (2019) IEEE Transactions on Power Electronics, 34 (10), статья № 8625545, pp. 9966-9977.
  6. Kotiev G.O., Butarovich D.O., Kositsyn B.B. Energy efficient motion control of the electric bus on route (2018) IOP Conference Series: Materials Science and Engineering, 315 (1), статья № 012014, doi: 10.1088/1757-899X/315/1/012014.
  7. Красовский А.Б. Основы электропривода : учебное пособие. Москва : Издательство МГТУ им. Н. Э. Баумана, 2015. 405 с.
  8. MathWorks - Makers of MATLAB and Simulink - MATLAB & Simulink. URL: https://www.mathworks.com/ (дата обращения: 22.01.2020).
  9. Danfoss - Engineering Tomorrow. URL: https://www.danfoss.com/en/ (дата обращения: 27.02.2020)
  10. BorgWarner URL: https://www.borgwarner.com/home (дата обращения: 27.02.2020).
  11. DANA TM4 - Electric and hybrid powertrain systems. URL: https://www.danatm4.com/ (дата обращения: 27.02.2020).
  12. YASA Limited | First for efficient electric powertrain. E-motors, controllers and electric drive. URL: https://www.yasa.com/ (дата обращения: 27.02.2020).
  13. Electric drives, DC converters and battery chargers, motor controllers and portable power electronics are just a few of the solutions of BRUSA Elektronik AG supplies to automobile manufacturers around the world. URL: https://www.brusa.biz/en.html (дата обращения: 27.02.2020).
  14. GKN Automotive. URL: https://www.gknautomotive.com/ (дата обращения: 27.02.2020).
  15. Leise P., Altherr L.C., Simon N., Pelz P.F. (2020) Finding Global-Optimal Gearbox Designs for Battery Electric Vehicles. In: Le Thi H., Le H., Pham Dinh T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham.
  16. Котиев Г.О., Мирошниченко А.В., Стадухин А.А. Определение скоростных диапазонов многоцелевых колесных и гусеничных машин с электромеханической трансмиссией // Труды НАМИ. 2017. № 3(270). С. 51-55.
  17. Economic Commission for Europe Inland Transport Committee World Forum for Harmonization of Vehicle Regulations Working Party on Pollution and Energy Seventy-eighth session Geneva, 8-11 January 2019Item 3(b) of the provisional agenda Light vehicles - Global Technical Regulations Nos. 15 (Worldwide harmonized Light vehicles Test Procedures (WLTP)) and 19 (Evaporative emission test procedure for the Worldwide harmonized Light vehicle Test Procedure (WLTP EVAP)).
  18. Dynamometer Drive Schedules [Электронный ресурс] // United States Environmental Protection Agency. URL: https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules (дата обращения: 25.10.2019).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Padalkin B.V., Ivanenkov V.V., Kositsyn B.B., Stadukhin A.A., Balkovskiy K.S., 2020

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».