Automated traffic control system based on recognition of the road scene and its objects
- 作者: Porubov D.M1, Beresnev P.O1, Tyugin D.Y.1, Tumasov A.V1, Belyakov V.V1, Zezyulin D.V1
-
隶属关系:
- R.E. Alekseev Nizhny Novgorod State Technical University
- 期: 卷 12, 编号 1 (2018)
- 页面: 52-63
- 栏目: Articles
- URL: https://journal-vniispk.ru/2074-0530/article/view/66858
- DOI: https://doi.org/10.17816/2074-0530-66858
- ID: 66858
如何引用文章
全文:
详细
作者简介
D. Porubov
R.E. Alekseev Nizhny Novgorod State Technical University
Email: dmitry.porubov@nntu.ru
P. Beresnev
R.E. Alekseev Nizhny Novgorod State Technical University
D. Tyugin
R.E. Alekseev Nizhny Novgorod State Technical UniversityPh.D.
A. Tumasov
R.E. Alekseev Nizhny Novgorod State Technical UniversityPh.D.
V. Belyakov
R.E. Alekseev Nizhny Novgorod State Technical UniversityDr.Eng.
D. Zezyulin
R.E. Alekseev Nizhny Novgorod State Technical UniversityPh.D.
参考
- On-road Automated Vehicle Standards Committee, 2014. SAE J3016: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems. SAE International.
- Журнал The journal modern electronics. Режим доступа: https://www.soel.ru/rubrikator/rynok/ (Дата обращения 10.01.2018).
- Hoang, T., Hong, H., Vokhidov, H., Park, K. Road lane detection by discriminating dashed and solid road lanes using a visible light camera sensor // Sensors, 2016, 16, 1313.
- Shanti B., Ganorkar S. Real-time lane detection for driving system using image // Processing. International Research Journal of Engineering and Technology (IRJET), 2015, Volume: 02 Issue.
- Janda F., Pangerl S., Schindler A. A Road Edge Detection Approach for Marked and Unmarked Lanes Based on Video and Radar. // 16th International Conference on Information Fusion, 2013, July 9-12.
- Shojania H. Real time traffic sign detection // Report Project on Fall, 2003.
- de la Escalera, A., Moreno, L., Salichs, M., Armingol, J. M. Road traffic sign detection and classification. Industrial Electronics // IEEE Transactions. 1997. V.6. pp 848 - 859.
- Pydipogu P., Fahim M., Shafique M. Robust lane detection and object tracking in relation to the intelligence transport system // Master’s Thesis Electrical Engineering Signal Processing, 2013.
- Shah V., Maru S., Jhaveri R. An obstacle detection scheme for vehicles in an intelligent transportation system // Int. J. Comput. Netw. Inf. Secur., 2016, vol. 8, no. 10, pp. 23-28.
- Dyczkowski K., Gadecki P., Kułakowski A. Traffic signs recognition system // Proceedings of the World Conference on Soft Computing, San Francisco State University, USA, 2011.
- Sumi K., Arun Kumar M. Detection and recognition of road traffic signs // A Survey. International Journal of Computer Applications, 2017, Volume 160 - No.3.
- Fifik M., Turán J., Ovseník L., Fazekas K. Experiments with a transform based traffic sign recognition system // Proc. of 17th International Conference on Systems Signals and Image Processing IWSSI P2010, 2010, June 17-19. pp. 227-230.
- Xu H., Wang X., Huang H., Wu K., Fang Q. A fast and stable lane detection method based on b-spline curve // Proceedings of the IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design,Wenzhou, China, 2009, 26-29; pp. 1036-1040.
- Li W., Gong X., Wang Y., Liu P.A. Lane marking detection and tracking algorithm based on sub-regions // Proceedings of the International Conference on Informative and Cybernetics for Computational Social Systems, Qingdao, China, 2014, 9-10; pp. 68-73.
- Wang Y., Teoh E., Shen D. Lane detection and tracking using b-snake // Image Vis. Comput., 22, 2004, pp. 269-280.
- Deng J., Kim J., Sin H., Han Y. Fast lane detection based on the B-spline fitting // Int. J. Res. Eng. Tech., 2013, V.2, pp.134-137.
- Tan H., Zhou Y., Zhu Y., Yao D., Li K. A novel curve lane detection based on improved river flow and RANSA // Proceedings of the International Conference on Intelligent Transportation Systems, Qingdao, China, 2014, 8-11; pp. 133-138.
- Zhou S., Jiang Y., Xi J., Gong J., Xiong G., Chen H. A novel lane detection based on geometrical model and Gabor filter. // Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 2010, 21-24; pp. 59-64.
- Litkouhi B., Lee A., Craig D. Estimator and controller design for Lanetrak, a vision-based automatic vehicle steering system // Proceedings of the 32nd Conference on Decision and Control, San Antonio, TX, USA, 1993, 15-17; pp. 1868-1873.
- Yoo H., Yang U., Sohn K. Gradient-enhancing conversion for illumination-robust lane detection // IEEE Trans. Intell. Transp. Syst., 2013, 14, 1083-1094.
- Chiu K., Lin S. Lane detection using color-based segmentation // Proceeding of the Intelligent Vehicles Symposium, Las Vegas, NV, USA, 2005, 6-8; pp. 706-711.
- Shin J., Lee E., Kwon K., Lee S. Lane detection algorithm based on top-view image using random sample consensus algorithm and curve road model // Proceedings of the 6th International Conference on Ubiquitous and Future Networks, Shanghai, China, 2014, 8-11; pp. 1-2.
- Lu W., Rodriguez F., Seignez E., Reynaud R. Monocular multi-kernel based lane marking detection // Proceedings of the 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Hong Kong, China, 2014, 4-7; pp. 123-128.
- Aly M. Real time detection of lane markers in urban streets // Proceedings of the IEEE Intelligent Vehicles Symposium, Eindhoven, 2008, The Netherlands, 4-6; pp. 7-12.
- Li H., Feng M., Wang X. Inverse perspective mapping based urban road markings detection. In Proceedings of the International Conference on Cloud Computing and Intelligent Systems, 2013, Hangzhou, China, 30; pp. 1178-1182.
- Li Z., Cai Z.-X., Xie J., Ren X.-P. Road markings extraction based on threshold segmentation. In Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery, 2012, Chongqing, China, 29-31; pp. 1924-1928.
- Mu C., Ma X. Lane detection based on object segmentation and piecewise fitting. TELKOMNIKA Indones. J. Electr. Eng., 2014, 12, 3491-3500.
- Máthé K.; Buşoniu L. Vision and control for uavs: a survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors, 2015, 15, 14887-14916.
- Библиотека OpenCV. Режим доступа: https://opencv.org/ (Дата обращения 10.01.2018).
- ГОСТ Р 52290-2004. Технические средства организации дорожного движения. Знаки дорожные. Общие технические требования. Введ. 2006-01-01. М.: Изд-во стандартов, 2004. 118 с.
- Ding, Y., Xu, Z., Zhang, Y., Sun, K. Fast lane detection based on bird’s eye view and improved random sample consensus algorithm // Multimedia Tools and Applications. 2016. 10.1007/s11042-016-4184-6.
- Официальный сайт Группы ГАЗ. Режим доступа: http://gazgroup.ru (Дата обращения 10.01.2018).
补充文件
