Ejector-type heat exchangers in the air conditioning in transport



Cite item

Full Text

Abstract

In the modern world, the air conditioning systems have become the most widespread application and have become an everyday part of everyday life. However, due to the complexity of the construction during the designing of the air conditioning systems and the development of modern technologies, there are still many system’s assemblies that can be upgraded and improved. Along with such parameters as ergonomics and weight and size characteristics, a significant role is played by such parameters of the operation of the air conditioning systems as efficiency, reliability, resource. These parameters are particularly relevant in the context of miniaturization and work on a closed cycle in mobile transport vehicles (automotive, aircraft and ship equipment), since efficiency, mass and resource exert a determinative influence on the total cost of vehicles and the costs of its maintenance and operation. The main parameters that regulate the air conditioning systems are the temperature, flow rate and humidity of the supplied air. The article studies and compares the methods of primary cooling of hot air supplied to the helicopter's air conditioning systems, when the cabin is heated at low temperatures. Often this is done using air-to-air heat exchangers. In the materials of the article, it is proposed to consider the option of replacing one of such heat exchanger with an ejector-type heat exchanger, a description and comparison of the existing and proposed options for the modernization of the air conditioning system’s schemes, and estimate the acceptability of their implementation on the helicopter. Also, a comparative work was conducted to estimate the advantages and disadvantages of such a replacement. The primary estimated calculations of the change in the system’s parameters were implemented in the case of introduction of a replacement in all conventional load modes of a typical helicopter model. Specific features of the application of this replacement are given and additional innovations which are necessary for its implementation are pointed out. For calculations, the software complex ANSYS CFX, MathCAD, Solid Edge ST8 was used. In the course of the work, a construction and a method were revealed that provided the optimal parameters and method of implementation for the introduction of the ejector into the composition of the air conditioning system.

About the authors

V. I Merkulov

Moscow Polytechnic University

Dr.Eng.

A. A Popov

Moscow Polytechnic University

Email: Constructor.Alex@yandex.ru

A. V Polikarpov

Moscow Polytechnic University

I. V Tishchenko

Bauman MSTU

Ph.D.

References

  1. Степанов И.С., Евграфов А.Н., Карунин А.Л., Ломакин В.В., Шарипов В.М. Автомобили и тракторы. Основы эргономики и дизайна / Под общ. ред. В.М. Шарипова. М.: МГТУ «МАМИ», 2002. 230 с.
  2. Шарипов В.М., Михайлов В.А., Шарипова Н.Н. Климатическая комфортабельность колесных и гусеничных машин. Saarbrücken: LAP LAMBERT Aсademic Publishing GmbH & Co. KG, 2011. 197 с.
  3. Воронин Г.И., Верба М.И. Кондиционирование воздуха на летательных аппаратах. М.: Машиностроение, 1965. 480 с.
  4. Антонова Н.В., Дубовин Л.Д., Шустров Ю.М. и др. Проектирование авиационных систем кондиционирования воздуха. М.: Машиностроение, 2006. 384 с.
  5. Щербаков А.В. Автоматическое регулирование авиационных систем кондиционирования воздуха. М.: Изд-во МГТУ им. Н. Э.Баумана, 2010. 290 с.
  6. Романков П.Г., Фролов В.Ф., Флисюк О.М. Методы расчета процессов и аппаратов химической технологии. СПб.: Химиздат, 2009. 544 с.
  7. Кутателадзе С.С., Боришанский В.М. Справочник по теплопередаче. М.: Наука, 1986. 414 с.
  8. Варгафтик Л. П., Филиппов А. А. Справочник по теплопроводности жидкостей и газов. М.: Энергоатомиздат, 1990. 352 с.
  9. ГОСТ 22270-76. Оборудование для кондиционирования воздуха, вентиляции и отопления. М.: Изд-во стандартов, 1976. 36 с.
  10. Александров В.Ю., Климовский К.К. Оптимальные эжекторы (теория и расчет). М.: Машиностроение, 2012. 136 с.
  11. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1991. 600 с.
  12. ГОСТ 2.781-96. Обозначения условные графические. Аппараты гидравлические и пневматические, устройства управления и приборы контрольно-измерительные. М.: Изд-во стандартов, 1996. 123 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Merkulov V.I., Popov A.A., Polikarpov A.V., Tishchenko I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».