Recombinant production, species-specific activity at the TRPA1 channel, and significance of the N-terminal residue of ProTx-I toxin from Thrixopelma pruriens tarantula venom
- Авторлар: Shulepko M.A.1, Zhang M.1, Zhivov E.A.2,3, Kulbatskii D.S.2, Paramonov A.S.2, Che Y.1, Kuznetsov A.V.1, Popov A.V.2,4, Kirpichnikov M.P.2,5, Shenkarev Z.O.2,3, Lyukmanova E.N.1,2,3,5
-
Мекемелер:
- Shenzhen MSU-BIT University
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
- Moscow Center for Advanced Studies
- Kurchatov Medical Primatology Center of National Research Center “Kurchatov Institute”
- Lomonosov Moscow State University
- Шығарылым: Том 17, № 4 (2025)
- Беттер: 121-129
- Бөлім: Research Articles
- URL: https://journal-vniispk.ru/2075-8251/article/view/365066
- DOI: https://doi.org/10.32607/actanaturae.27590
- ID: 365066
Дәйексөз келтіру
Аннотация
The ProTx-I toxin from Thrixopelma pruriens tarantula venom inhibits voltage-gated sodium (NaV), potassium, and calcium channels, as well as the chemosensitive TRPA1 ion channel, affecting the activating processes of these channels. Due to its action at the NaV1.7, NaV1.8, and TRPA1 channels involved in pain perception and propagation, ProTx-I may be used as a model for the development of next-generation analgesics. ProTx-I consists of 35 amino acid residues, with three disulfide bonds forming an inhibitor cystine knot (ICK) motif, which challenges its heterologous production. An efficient ProTx-I production system is necessary to study, at the molecular level, the mechanism by which the toxin acts. In this study, we tested several approaches for bacterial production of disulfide-containing toxins. Cytoplasmic expression of ProTx-I fused with either thioredoxin or glutathione-S-transferase failed to yield a correctly folded toxin. However, the natively folded ProTx-I was successfully obtained by “direct” expression in the form of cytoplasmic inclusion bodies, followed by renaturation, as well as by secretion into the periplasmic space via fusion with maltose-binding protein. The activity of the recombinant ProTx-I was studied by electrophysiology in X. laevis oocytes expressing rat and human TRPA1 channels. The toxin proved to be more active on the rat channel than on the human channel (IC50 = 250 ± 85 and 840 ± 190 nM, respectively). The presence of an additional N-terminal methionine residue in the toxin obtained through “direct” expression significantly attenuated its activity.
Негізгі сөздер
Авторлар туралы
Mikhail Shulepko
Shenzhen MSU-BIT University
Email: mikhailshulepko@yandex.ru
Faculty of Biology
ҚХР, Shenzhen, Guangdong Province, 518172Mendi Zhang
Shenzhen MSU-BIT University
Email: zmd010816@163.com
Faculty of Biology
ҚХР, Shenzhen, Guangdong Province, 518172Eugenii Zhivov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Moscow Center for Advanced Studies
Email: evgeniy-kovalenko2016@mail.ru
Ресей, Moscow, 117997; Moscow, 123592
Dmitrii Kulbatskii
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: d.kulbatskiy@gmail.com
Ресей, Moscow, 117997
Alexander Paramonov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: apar@nmr.ru
ORCID iD: 0000-0003-3614-560X
Ресей, Moscow, 117997
Yuqi Che
Shenzhen MSU-BIT University
Email: cheyuqi1997@163.com
Faculty of Biology
ҚХР, Shenzhen, Guangdong Province, 518172A. Kuznetsov
Shenzhen MSU-BIT University
Email: kuznetsov.a25@icloud.com
Faculty of Biology
ҚХР, Shenzhen, Guangdong Province, 518172A. Popov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Kurchatov Medical Primatology Center of National Research Center “Kurchatov Institute”
Email: lyukmanova_ekaterina@smbu.edu.cn
Ресей, Moscow, 117997; Krasnodarskiy kray, Sochi, 354376
Mikhail Kirpichnikov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Lomonosov Moscow State University
Email: kirpichnikov@inbox.ru
Interdisciplinary Scientific and Educational School “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University
Ресей, Moscow, 117997; Moscow, 119234Zakhar Shenkarev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Moscow Center for Advanced Studies
Email: zakhar-shenkarev@yandex.ru
Ресей, Moscow, 117997; Moscow, 123592
Ekaterina Lyukmanova
Shenzhen MSU-BIT University; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Moscow Center for Advanced Studies; Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: lyukmanova_ekaterina@smbu.edu.cn
Faculty of Biology, Shenzhen MSU-BIT University; Interdisciplinary Scientific and Educational School “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University
ҚХР, Shenzhen, Guangdong Province, 518172; Moscow, 117997 Russia; Moscow, 123592 Russia; Moscow, 119234 RussiaӘдебиет тізімі
- Kuhn-Nentwig L, Stöcklin R, Nentwig W. Venom Composition and Strategies in Spiders. Is Everything Possible? Adv Insect Physiol. 2011;40:1−86. doi: 10.1016/B978-0-12-387668-3.00001-5
- Peigneur S, de Lima ME, Tytgat J. Phoneutria nigriventer venom: A pharmacological treasure. Toxicon. 2018;151:96−110. doi: 10.1016/j.toxicon.2018.07.008
- Lyukmanova EN, Shenkarev ZO. Toxins from Animal Venom − A Rich Source of Active Compounds with High Pharmacological Potential. Toxins (Basel). 2024;16(12):512. doi: 10.3390/toxins16120512
- Cardoso FC, Lewis RJ. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Front Pharmacol. 2019;10:366. doi: 10.3389/fphar.2019.00366
- Kintzing JR, Cochran JR. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr Opin Chem Biol. 2016;34:143−150. doi: 10.1016/j.cbpa.2016.08.022
- Milescu M, Bosmans F, Lee S, Alabi AA, Kim JI, Swartz KJ. Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol. 2009;16(10):1080−1085. doi: 10.1038/nsmb.1679
- Middleton RE, Warren VA, Kraus RL, et al. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry. 2002;41(50):14734−14747. doi: 10.1021/bi026546a
- Gui J, Liu B, Cao G, et al. A Tarantula-Venom Peptide Antagonizes the TRPA1 Nociceptor Ion Channel by Binding to the S1–S4 Gating Domain. Curr Biol. 2014;24(5):473−483. doi: 10.1016/j.cub.2014.01.013
- Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel). 2019;11(2):131. doi: 10.3390/toxins11020131
- Souza Monteiro de Araujo D, Nassini R, Geppetti P, De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets. 2020;24(10):997−1008. doi: 10.1080/14728222.2020.1815191
- Dormer A, Narayanan M, Schentag J, et al. A Review of the Therapeutic Targeting of SCN9A and Nav1.7 for Pain Relief in Current Human Clinical Trials. J Pain Res. 2023;16:1487−1498. doi: 10.2147/JPR.S388896
- Moore SJ, Cochran JR. Engineering knottins as novel binding agents. Methods Enzymol. 2012;503:223−251. doi: 10.1016/B978-0-12-396962-0.00009-4
- Fitches EC, Pyati P, King GF, Gatehouse JA. Fusion to snowdrop lectin magnifies the oral activity of insecticidal ω-Hexatoxin-Hv1a peptide by enabling its delivery to the central nervous system. PLoS One. 2012;7(6):e39389. doi: 10.1371/journal.pone.0039389
- Yang S, Pyati P, Fitches E, Gatehouse JA. A recombinant fusion protein containing a spider toxin specific for the insect voltage-gated sodium ion channel shows oral toxicity towards insects of different orders. Insect Biochem Mol Biol. 2014;47(100):1−11. doi: 10.1016/j.ibmb.2014.01.007
- Monfared N, Ahadiyat A, Fathipour Y, Mianroodi RA. Evaluation of recombinant toxin JFTX-23, an oral-effective anti-insect peptide from the spider Selenocosmia jiafu venom gland proteome. Toxicon. 2022;217:78−86. doi: 10.1016/j.toxicon.2022.08.003
- Matsubara FH, Meissner GO, Herzig V, et al. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus. Insect Mol Biol. 2017;26(1):25−34. doi: 10.1111/imb.12268
- Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol. 2014;5:63. doi: 10.3389/fmicb.2014.00063
- Berlec A, Strukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol. 2013;40(3−4):257−274. doi: 10.1007/s10295-013-1235-0
- Klint JK, Senff S, Saez NJ, et al. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One. 2013;8(5):e63865. doi: 10.1371/journal.pone.0063865
- Anangi R, Rash LD, Mobli M, King GF. Functional Expression in Escherichia coli of the Disulfide-Rich Sea Anemone Peptide APETx2, a Potent Blocker of Acid-Sensing Ion Channel 3. Mar Drugs. 2012;10(7):1605−1618. doi: 10.3390/md10071605
- Logashina YA, Solstad RG, Mineev KS, et al. New Disulfide-Stabilized Fold Provides Sea Anemone Peptide to Exhibit Both Antimicrobial and TRPA1 Potentiating Properties. Toxins (Basel). 2017;9(5):154. doi: 10.3390/toxins9050154
- Lyukmanova EN, Mironov PA, Kulbatskii DS, et al. Recombinant Production, NMR Solution Structure, and Membrane Interaction of the Phα1β Toxin, a TRPA1 Modulator from the Brazilian Armed Spider Phoneutria nigriventer. Toxins (Basel). 2023;15(6):378. doi: 10.3390/toxins15060378
- Berkut AA, Peigneur S, Myshkin MY, et al. Structure of Membrane-active Toxin from Crab Spider Heriaeus melloteei Suggests Parallel Evolution of Sodium Channel Gating Modifiers in Araneomorphae and Mygalomorphae. J Biol Chem. 2015;290(1):492−504. doi: 10.1074/jbc.M114.595678
- Shlyapnikov YM, Andreev YA, Kozlov SA, Vassilevski AA, Grishin EV. Bacterial production of latarcin 2a, a potent antimicrobial peptide from spider venom. Protein Expr Purif. 2008;60(1):89−95. doi: 10.1016/j.pep.2008.03.011
- Paiva ALB, Matavel A, Peigneur S, et al. Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels. Biochimie. 2016;121:326−335. doi: 10.1016/j.biochi.2015.12.019
- Zhang H, Huang PF, Meng E, et al. An efficient strategy for heterologous expression and purification of active peptide hainantoxin-IV. PLoS One. 2015;10(2):e0117099. doi: 10.1371/journal.pone.0117099
- Shulepko MA, Lyukmanova EN, Shenkarev ZO, et al. Towards universal approach for bacterial production of three-finger Ly6/uPAR proteins: Case study of cytotoxin I from cobra N. oxiana. Protein Expr Purif. 2017;130:13−20. doi: 10.1016/j.pep.2016.09.021
- Andreev YA, Kozlov SA, Vassilevski AA, Grishin EV. Cyanogen bromide cleavage of proteins in salt and buffer solutions. Anal Biochem. 2010;407(1):144−146. doi: 10.1016/j.ab.2010.07.023
- Rupasinghe DB, Herzig V, Vetter I, et al. Mutational analysis of ProTx-I and the novel venom peptide Pe1b provide insight into residues responsible for selective inhibition of the analgesic drug target NaV1.7. Biochem Pharmacol. 2020;181:114080. doi: 10.1016/j.bcp.2020.114080
- Vásquez-Escobar J, Benjumea-Gutiérrez DM, Lopera C, et al. Heterologous Expression of an Insecticidal Peptide Obtained from the Transcriptome of the Colombian Spider Phoneutria depilate. Toxins (Basel). 2023;15(7):436. doi: 10.3390/toxins15070436
- Dubovskii PV, Dubinnyi MA, Konshina AG, et al. Structural and Dynamic “Portraits” of Recombinant and Native Cytotoxin I from Naja oxiana: How Close Are They? Biochemistry. 2017;56(34):4468−4477. doi: 10.1021/acs.biochem.7b00453
- Lyukmanova EN, Shenkarev ZO, Khabibullina NF, et al. N-terminal fusion tags for effective production of g-protein-coupled receptors in bacterial cell-free systems. Acta Naturae. 2012;4(15):58−64. doi: 10.32607/20758251-2012-4-4-58-64
- Saez NJ, Cristofori-Armstrong B, Anangi R, King GF. A Strategy for Production of Correctly Folded Disulfide-Rich Peptides in the Periplasm of E. coli. Methods Mol Biol. 2017;1586:155−180. doi: 10.1007/978-1-4939-6887-9_10
- Li J, Zhang H, Liu J, Xu K. Novel genes encoding six kinds of three-finger toxins in Ophiophagus hannah (king cobra) and function characterization of two recombinant long-chain neurotoxins. Biochem J. 2006;398(2):233−242. doi: 10.1042/BJ20060004
- Clement H, Flores V, De la Rosa G, Zamudio F, Alagon A, Corzo G. Heterologous expression, protein folding and antibody recognition of a neurotoxin from the Mexican coral snake Micrurus laticorallis. J Venom Anim Toxins Incl Trop Dis. 2016;22(1):25. doi: 10.1186/s40409-016-0080-9
- Lyukmanova EN, Shulga AA, Arsenieva DA, et al. A Large-Scale Expression in Escherichia coli of Neurotoxin II from Naja oxiana Fused with Thioredoxin. Russ J Bioorg Chem. 2004;30(1):25−34. doi: 10.1023/B:RUBI.0000015770.38602.e3
Қосымша файлдар

