Issues of system analysis of passive remote sensing of atmospheric gases
- Authors: Asadov H.H.1, Abilova N.S.1
-
Affiliations:
- National Aerospace Agency
- Issue: Vol 74, No 2 (2024)
- Pages: 33-39
- Section: Methods and Models of Systems Analysis
- URL: https://journal-vniispk.ru/2079-0279/article/view/287144
- DOI: https://doi.org/10.14357/20790279240205
- EDN: https://elibrary.ru/JZKOBC
- ID: 287144
Cite item
Full Text
Abstract
The issues of system analysis and synthesis of passive remote sensing systems for atmospheric gases are considered. The possibility of applying the solution of the Euler problem in the field of calculus of variations to optimize passive remote sensing of atmospheric gases is considered. The objective functional, called the Euler-Booger functional, is compiled and the optimization conditions for three atmospheric gas measurement modes are analyzed: (a) without a derivative spectrum; (b) with a basic and derivative spectrum; (c) using the derived spectrum only. Equations are obtained for the formation of an optimal relationship between the optical thickness of the atmosphere and the extra-atmospheric solar radiation flux at which the target functional called the Euler-Booger functional reaches a maximum.
About the authors
H. H. Asadov
National Aerospace Agency
Author for correspondence.
Email: asadzade@rambler.ru
The head of the department, Doctor of Technical Sciences, Professor
Azerbaijan, BakuN. S. Abilova
National Aerospace Agency
Email: nergiz.ebilova36@gmail.com
Deputy, The head of the department, Doctoral student (post-graduate student)
Azerbaijan, BakuReferences
- Ortiz J.D., Avouris D.M., Schiller S.J., Luvall J.C., Lekki J.D. Evaluating visible derivative spectroscopy by varimax-rotated, principal component analysis of aerial hyperspectral images from the western basin of lake Erie// Journal of great lakes research. 45(3). 2019. P. 522-535. http://doi.org/10.1016/j.jglr.2019.03.005.
- Bostater C.R. High order derivative spectroscopy for selecting spectral regions&channels for remote sensing algorithm development// Part of the EUROPTO Conference on remote Sensing for earth science applications. Florence, Italy. September 1999.
- Shafique N.A., Fulk F., Cornier S.M., Autrey B.C. Coupling hyperspectral remote sensing with field spectrometer to monitor inland water quality parameters.
- Hong Y., Chen Y., Yu L., Liu Y., Zhang Y., Liu Y., Cheng H. Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS-NIR spectroscopy// Remote Sens. 2018. P. 479.
- Louchard E.M., Reid R.P., Stephens C.F., Davis C.O., Leathers R.A., Downes T.V. Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments// Optics express. Vol. 10. No. 26. 2002.
- Girona T., Realmuto V., Lundgren P. Large-scale thermal unrest of volcanoes for years prior to eruption// Nature Geoscience 14. 2021. P. 238-241.
- Chuvieco E., Mouillot F., Werf G. R., San Miguel J., Tanase M., Koutsias N. et al. Historical background and current developments for mapping burned area from satellite observation// Remote Sens. Environ. 225. 2021. P. 45-64.
- Klapp I., Yafin P., Oz N., Brand O., Bahat I., Goldshtein E, et al. Computational end-to-end and super-resolution methods to improve thermal infrared sensing for agriculture// Precision agriculture 22. 2021. P. 452-474.
- Klanner L., Hoveler K., Khordakova D., Perfahl M., Rolf C., et al. A powerfull lidar system capable of 1 h measurments of water vapour in the troposphere and the lower stratosphere as well as the temperature in the upper stratosphere and mesosphere// Atmos. Meas. Tech. 14. 2021. P. 531-555.
- Kuhn J., Bobrowski N., Lubcke P., Vogel L., Platt U. A fabry-perot interferometer-based camera for two-dimensional mapping of SO2 distributions// Atmos. Meas. Tech. 7. 2014. https://doi.org/10.5194/amt-7-3705-2014.
- Kuhn J., Bobrowski N., Platt U., Wagner T. Towards imaging of atmospheric trace gases using Fabry-Perot interferometer correlation spectroscopy in the UV and visible spectral range// Atmos. Meas. Tech. 12. 2019. https://doi.org/10.5194/amt-12-735-2019.
- Gushchin G.P., Vinogradova I.N. Total ozone in the atmosphere// Hydrometeorological data. 1983. p. 121.(In Russ).
- Gorbunov K.Yu., Lyubetsky V. A. Linear algorithm of the shortest graph rearrangement at different transaction prices// Informatiy. Processes. 2016. Vol. 16. No. 2. P. 223-236 (In Russ).
- Lyubetsky V.A., Gershgorin R.A., Seliverstov A.V., Gorbunov K.Yu. Algorithms for reconstruction of chromosomal structures// BMC Bioinformatics. 2016. V. 17. P. 40.1-40.23.
- Braga M.D.V., Stoye J. Sorting linear genomes with rearrangements and indels// IEEE/ACM trans. On computational biology and bioinformatics. 2015. Vol. 12. No. 3. P. 1-13.
- Poberovskii A.V., Makarova M.V., Rakitin A.V. et al. Variability of total column amounts of climate influencing gases obtained from ground based high resolution spectroscope measurements// Dokl. Akad. Nauk 432 (2). 2010. P. 257-259.
- Yelchishcheva Yu.B. Spectrophotometric methods of analysis: textbook// Perm State National Research University. 2023. P. 188 (In Russ).
- Abramov V.M., Egorov A.D., Potapova I.A. Methodological foundations of optical.
- Mikhailov A.V. Optimization methods in examples and tasks// M. Publishing complex MGUPP. 2009. P. 93 (In Russ).
Supplementary files
