Investigation of different influence functions in peridynamics
- Authors: Deryugin Y.N.1, Vetchinnikov M.V.2, Shishkanov D.A.1
-
Affiliations:
- Russian Federal Nuclear Center National Research Mordovia State University
- Russian Federal Nuclear Center
- Issue: Vol 25, No 4 (2023)
- Pages: 342-360
- Section: Mathematical modeling and computer science
- Submitted: 23.12.2025
- Accepted: 23.12.2025
- Published: 24.12.2025
- URL: https://journal-vniispk.ru/2079-6900/article/view/360900
- DOI: https://doi.org/10.15507/2079-6900.25.202304.342-360
- ID: 360900
Cite item
Full Text
Abstract
Peridynamics is a non–local numerical method for solving fracture problems based on integral equations. It is assumed that particles in a continuum are endowed with volume and interact with each other at a finite distance, as in molecular dynamics. The influence function in peridynamic models is used to limit the force acting on a particle and to adjust the bond strength depending on the distance between the particles. It satisfies certain continuity conditions and describes the behavior of non-local interaction. The article investigates various types of influence function in peridynamic models on the example of three-dimensional problems of elasticity and fracture. In the course of the work done, the bond-based and state-based fracture models used in the Sandia Laboratory are described, 6 types of influence functions for the bond-based model and 2 types of functions for the state-based model are presented, and the corresponding formulas for calculating the stiffness of the bond are obtained. For testing, we used the problem of propagation of a spherically symmetric elastic wave, which has an analytical solution, and a qualitative problem of destruction of a brittle disk under the action of a spherical impactor. Graphs of radial displacement are given, raster images of simulation results are shown.
About the authors
Yuriy N. Deryugin
Russian Federal Nuclear CenterNational Research Mordovia State University
Email: dyn1947@yandex.ru
ORCID iD: 0000-0002-3955-775X
Chief Researcher
professor, Department of Applied Mathematics, Differential Equations and Theoretical Mechanics
Russian Federation, 22 Yunosti St., Sarov 607182, Russia 68/1 Bolshevistskaya St., Saransk 430005, RussiaMaxim V. Vetchinnikov
Russian Federal Nuclear Center
Email: vetchinnikov_max@mail.ru
ORCID iD: 0000-0003-0321-1738
Head of research laboratory
Russian Federation, 22 Yunosti St., Sarov 607182, RussiaDmitry A. Shishkanov
Russian Federal Nuclear CenterNational Research Mordovia State University
Author for correspondence.
Email: dima.shishkanov.96@mail.ru
ORCID iD: 0000-0002-3063-4798
research laboratory mathematician,
postgraduate, Department of Applied Mathematics, Differential Equations and Theoretical Mechanics
Russian Federation, 22 Yunosti St., Sarov 607182, Russia 68/1 Bolshevistskaya St., Saransk 430005, RussiaReferences
- F. Bobaru, P.H. Geubelle, J.T. Foster, S. A. Silling, Handbook of peridynamic modeling, Taylor & Francis, NY, 2016 DOI: https://doi.org/10.1201/9781315373331, 586 p.
- E. Madenci, E. Oterkus, Peridynamic theory and its applications, New York: Springer, 2014 DOI: https://doi.org/10.1007/978-1-4614-8465-3, 297 p.
- D. A. Shishkanov, M. V. Vetchinnikov, Yu. N. Deryugin, "Peridynamics method for problems solve of solids destruction", Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 24:4 (2022), 452–468 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.24.202204.452-468
- V. N. Sofronov, M. V. Vetchinnikov, M. A. Dyemina, "Use of Hamiltonian dynamics methods in computational continuum mechanics", Zhurnal VANT, 2020, no. 4 (In Russ.), 17 p.
- M.L. Parks, P. Seleson, S. J. Plimpton, R.B. Lehoucq , S.A. Siling, "Peridynamics with LAMMPS: A User Guide v0.2 Beta", 2008, 28 p.
- A. N. Anisimov, S. A. Grushin, B. L. Voronin, S. V. Kopkin, A. M. Yerofeev, D. A. Demin, M. A. Demina, M. V. Zdorova, M. V. Vetchinnikov, N. S. Ericheva, N. O. Kovalenko, I. A. Kryuchkov, A. G. Kechin, V. A. Degtyarev, Certificate of state registration of the computer program No. 2010614974. A complex of molecular dynamic modeling programs (MoDyS), 2010 (In Russ.).
- M. L. Parks, Lehoucq, R. B., S. J. Plimpton, S. A. Silling, "Implementing peridynamics within a molecular dynamics code", Computer Physics Communications, 179 (2008), 777–783. DOI: https://doi.org/10.1016/j.cpc.2008.06.011
- S. A. Silling, "Reformulation of elasticity theory for discontinuities and long-range forces", Journal of Mechanics and Physics of Solids, 48:1 (2000), 175–209. DOI: https://doi.org/10.1016/S0022-5096(99)00029-0
- S. A. Silling, E. Askari, "A meshfree method based on the peridynamic model of solid mechanics", Computers & Structures, 93:17 (2005), 1526–1535. DOI: https://doi.org/10.1016/j.compstruc.2004.11.026
- S. A. Silling, M. Zimmermann, R. Abeyaratne, "Deformation of a peridynamic bar", Journal of Elasticity, 73 (2003), 173–190.
- Z. Chen, J. W. Ju, G. Su, X. Huang, S. Li., L. Zhai, "Influence of micromodulus functions on peridynamics simulation of crack propagation and branching in brittle materials", Engineering Fracture Mechanics, 216 (2019). DOI: https://doi.org/10.1016/j.engfracmech.2019.106498
- S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, "Peridynamic states and constitutive modeling", Journal of Elasticity, 88 (2007), 151–184. DOI: https://doi.org/10.1007/s10659-007-9125-1
- A. J. Mitchell, S. A. Silling, D. J. Littlewood, "A position-aware linear solid constitutive model for peridynamics", Journal of Mechanics of Materials and Structures, 20:5 (2015), 539–557. DOI: https://dx.doi.org/10.2140/jomms.2015.10.539
- J. A. Mitchell, "On the ‘DSF’ and the ‘dreaded surface effect’, studies of presentation at Workshop on Nonlocal Damage and Failure", Sandia National Laboratories, 2013.
- S. A. Silling, R. B. Lehoucq, "Convergence of Peridynamics to Classical Elasticity Theory", Journal of Elasticity, 93 (2008), 13–37.
Supplementary files


