$L_p$-approximations for solutions of parabolic differential equations on manifolds
- Authors: Smirnova A.S.1
-
Affiliations:
- Higher School of Economics
- Issue: Vol 24, No 3 (2022)
- Pages: 297-303
- Section: Mathematics
- Published: 24.08.2022
- URL: https://journal-vniispk.ru/2079-6900/article/view/366177
- DOI: https://doi.org/10.15507/2079-6900.24.202203.297-303
- ID: 366177
Cite item
Full Text
Abstract
The paper considers the Cauchy problem for a parabolic partial differential equation in a Riemannian manifold of bounded geometry. A formula is given that expresses arbitrarily accurate (in the $L_p$-norm) approximations to the solution of the Cauchy problem in terms of parameters - the coefficients of the equation and the initial condition. The manifold is not assumed to be compact, which creates significant technical difficulties - for example, integrals over the manifold become improper in the case when the manifold has an infinite volume. The presented approximation method is based on Chernoff theorem on approximation of operator semigroups.
About the authors
Anna S. Smirnova
Higher School of Economics
Author for correspondence.
Email: smirnovaas@hse.ru
ORCID iD: 0000-0003-4172-2811
Postgraduate Student, Department of Fundamental Mathematics
Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, RussiaReferences
- E. G. Virga, Variational theories for liquid crystals, CRC Press, 2018.
- M. Rauter, Ž. Tuković, “A finite area scheme for shallow granular flows on three-dimensional surfaces”, Computers and Fluids, 166 (2018), 184–199. DOI: https://doi.org/10.48550/arXiv.1802.05229
- C. M. Elliott, B. Stinner, “Modeling and computation of two phase geometric biomembranes using surface finite elements”, Journal of Computational Physics, 229:18 (2010), 6585–6612. DOI: https://doi.org/10.1016/j.jcp.2010.05.014
- F. Mémoli, G. Sapiro, P. Thompson, “Implicit brain imaging”, NeuroImage, 23 (2004), S179–S188. DOI: https://doi.org/10.1016/j.neuroimage.2004.07.072
- C. B. Macdonald, S. J. Ruuth, “The implicit closest point method for the numerical solution of partial differential equations on surfaces”, SIAM Journal on Scientific Computing, 31:6 (2010), 4330–4350. DOI: https://doi.org/10.1137/080740003
- B. O. Volkov, “Levy Laplacians and instantons on manifolds”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23::2 (2020), 17 p. DOI: https://doi.org/10.48550/arXiv.2107.11215
- QI S. Zhang, “Blow-up results for nonlinear parabolic equations on manifolds”, Duke Mathematical Journal, 97:3 (1999), 515–539. DOI: https://doi.org/10.1215/S0012-7094-99-09719-3
- Q. Yan, S. W. Jiang, J. Harlim, “Kernel-based methods for solving time-dependent advection-diffusion equations on manifolds”, 2021. DOI: https://doi.org/10.48550/arXiv.2105.13835
- S. Mazzucchi, V. Moretti, I. Remizov, O. Smolyanov, “Feynman type formulas for Feller semigroups in Riemannian manifolds”, 2020, 36 p. DOI: https://doi.org/10.48550/arXiv.2002.06606
- P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Functional Analysis, 2:2 (1968), 238–242. DOI: https://doi.org/10.1016/0022-1236(68)90020-7
- Ya. A. Butko, “The method of Chernoff approximation”, Springer Proceedings in Mathematics and Statistics, 325 (2020), 19–46.
Supplementary files


