卷 27, 编号 4 (2025)

封面

完整期次

Mathematics

On orthogonal cubic Schoenberg splines

Leontiev V.

摘要

The modification of the mother cubic Schoenberg spline is carried out using four cubic Schoenberg splines having finite supports, the sizes of which are smaller compared to the size of the finite support of the mother spline. As a result, eight grid sets of orthogonal cubic Schoenberg splines with real values are constructed. A theorem on the order of approximation of any function of the Sobolev space by linear combinations of constructed orthogonal cubic Schoenberg splines is proved. It is shown that the order of approximation by Schoenberg splines, also modified by Schoenberg splines, is significantly higher than the order of approximation by Schoenberg splines modified by step functions, and coincides with the order of approximation by classical cubic Schoenberg splines. The defect of the modified Schoenberg spline is equal to one, as that of the classical Schoenberg spline. A modified spline is a continuous function in which there are no breaks in the first and second derivatives at the points where the parts of the mother spline and the parts of the splines used for modification meet.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025;27(4):411-421
pages 411-421 views

Applied mathematics and mechanics

Error estimates of Galerkin method in studying the dynamics of concrete slab

Ankilov M.

摘要

When calculating the strength of structural elements, one of the steps is to study the dynamics of these elements under various force loads. In this paper, based on the classical model of free vibrations of an elastic plate, in contrast to previous numerical and analytical studies, an analytical method for studying the dynamics of a concrete slab pinned at its edges is developed. According to the Galerkin method, an approximate solution of the partial differential equation used in the model is found as a linear combination of basis functions. This results in a system of ordinary differential equations for determining the coefficients of this combination. Based on the construction of a Lyapunov-type functional for the partial differential equation and on a Lyapunov function for the system of ordinary differential equations, several methods for determining the error of obtained approximate solution are proposed. Numerical calculations demonstrate the accuracy of error estimates. For this purpose, plots of the difference between the approximation under study and the higher-order approximation are constructed. The best estimate was shown by the method of error determination using the following basis function, whose coefficient was found from the equation obtained in study of the Lyapunov-type functional for the original partial differential equation.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025;27(4):422-434
pages 422-434 views

Application of the Full Approximation Scheme Multigrid Method to solving one-dimensional nonlinear partial differential equations by the Discontinuous Galerkin Method

Zhalnin R., Nefedov M., Zinina S.

摘要

This paper considers the Full Approximation Scheme (FAS) multigrid method for the Discontinuous Galerkin method with implicit time discretization. The objective of the research is to apply this method to efficient solution of problems governed by nonlinear partial differential equations. A computational algorithm has been developed that implements the Full Approximation Scheme multigrid method using Newton's method and an improved Newton-Krylov method to solve the arising nonlinear equations at each grid level of the multigrid method. This approach significantly improves the efficiency of the algorithm and reduces required computational resources. Numerical experiments were conducted applying both approaches for solving the Hopf equation. The influence of the regularization parameter and of the Courant number on the convergence rate of Newton's method outer iterations was investigated. It has been experimentally demonstrated that the use of the Newton-Krylov method significantly improves the overall performance of the computational process compared to the traditional Newton's method, although both approaches demonstrate a similar order of convergence, approaching second order when using quadratic basis functions.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025;27(4):435-450
pages 435-450 views

The problems of the worst-case disturbances acting on multi-mass elastic system

Tkachenko P., Balandin D., Ryabikova T.

摘要

An analytical framework for synthesizing worst-case external disturbances for linear dynamical systems described by ordinary differential equations is presented in the paper. The study is conducted for three classical functional spaces $L_2, L_{\infty}, L_1$ over a fixed time interval, which corresponds to identifying disturbances with bounded energy, bounded amplitude, and bounded impulse, respectively. Linear elastic mechanical systems are chosen as a illustrative object of analysis, thus providing an intuitive interpretation of the results. A unified performance metric is introduced for quantitative assessment of solutions. This metrics is the ratio of a system's target output (e.g., maximum deviation) to the $L_p$-norm of the disturbance (i.e. the normalized system response). Explicit analytical expressions for the worst-case disturbances and their corresponding performance indices are derived. The interrelations between the indices obtained for different disturbance classes are examined. Numerical simulation results are provided for single- and multiple-degree-of-freedom systems, represented as chains of point masses interconnected by elastic and damping elements, and connected to a movable base.
Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025;27(4):451-470
pages 451-470 views

A Lyapunov–Schmidt Analysis of Forced Oscillations in an Inhomogeneous Linear Oscillator Chain

Shamanaev P., Katin D., Oshina N.

摘要

Longitudinal oscillations of an inhomogeneous chain of linear oscillators coupled by springs are investigated. Both outer  springs of the chain are rigidly fixed to immovable supports. The system is subjected to external periodic forces.
The inhomogeneity of the chain (the perturbed system) is due to the different stiffness coefficients of the springs. These coefficients deviate slightly from a certain nominal value and depend on dimensionless deviation parameters. Zero values of these parameters correspond to a homogeneous (unperturbed) system.
The resonant case is considered when the frequency of the external periodic force coincides with one of the eigenfrequencies of the unperturbed system.
To construct an exact periodic solution of the perturbed system, the Lyapunov–Schmidt method is applied. As the problem is linear,  this method allows to reduce it to a finite-dimensional algebraic problem of constructing a generalized Jordan chain for a degenerate linear operator.
Necessary and sufficient conditions on the dimensionless deviation parameters are obtained, under which the length of such a chain is equal to 1 or 2. For each case, explicit exact formulas for the chain are derived, providing a complete description of the periodic solution.
It is shown that for a generalized Jordan chain of length 1, the periodic solution of the perturbed system continuously transforms into a certain periodic solution of the unperturbed system as the small parameter $\varepsilon$ tends to zero.
If the length of the generalized Jordan chain is $2$, the periodic solution of the perturbed system possesses a first-order pole at $\varepsilon=0$ and, reduces to a one-parameter family of periodic solutions of the unperturbed system.
Numerical simulation was performed for a chain of eight oscillators. Plots of periodic solutions and phase trajectories of the perturbed system are constructed for various values of the small parameter.
 
Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025;27(4):471-487
pages 471-487 views

Mathematical modeling and computer science

Study of influence of flow compressibility on dynamic stability of elastic wall of air duct

Ankilov G., Velmisov P., Zharkova A.

摘要

This paper examines the mathematical modeling of ventilation systems consisting of deformable air ducts through which an air flow is supplied. Using constructed three- dimensional mathematical model described by a system of partial differential equations, the paper investigates dynamic stability of the elastic wall of an air duct where some gas flows. The Lyapunov dynamic stability criterion is used to study the mechanical system’s stability. To study stability in problems of aerohydroelasticity in compressible and incompressible medium models, Lyapunov-type functionals are constructed for deduced systems of differential equations. By studying these functionals stability conditions are obtained. They ensure that the functional is positive and its time derivative is negative. For a compressible medium model, the dependence between the longitudinal force compressing the plate and the air flow velocity is constructed for specific parameters of the mechanical system. Using the plot constructed, a comparison of the stability conditions for compressible and incompressible medium models is made. It is shown that the medium compressibility has negative effect on the stability of the deformable wall of the air duct and leads to decrease of the stability region.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025;27(4):488-499
pages 488-499 views

2D model of the hydrodynamic escape of planetary atmospheres

Gorbunova K., Erkaev N.

摘要

The article considers a two-dimensional problem of hydrodynamic escape of the planet’s primordial hydrogen atmosphere as a result of absorption of extreme ultraviolet (EUV) radiation from its host star. As a test case, the model is applied using the parameters of a recently discovered exoplanet TOI-421b, which, according to accepted classification, belongs to so-called class of ''warm mini-Neptunes''. The hydrodynamic parameters are determined by solving the non-stationary Euler and entropy production equations in a spherical coordinate system. The EUV intensity is calculated using the radiation transport equation along parallel rays, with an absorption coefficient proportional to the density of the hydrogen atoms. The numerical method is based on a finite-difference scheme of the modified MacCormack - Runge-Kutta type on a spherical grid with a nonuniform step along the radial direction and a constant step along the spherical angle. The calculation of the radiation intensity at the grid points is perfomed along the characteristics with density interpolation. Steady-state two-dimensional profiles of physical parameters in the upper atmosphere obtained as the result of calculations are presented. An estimate of the dayside atmospheric mass-loss rate and the rate of mass transfer to the nightside under constant external conditions is provided.
Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025;27(4):500-516
pages 500-516 views

Reachability tape of J-net simulating the application of selection sequence optimization algorithm to single problem

Dimitriev A., Lavina T., Bazhenov R., Kopysheva T.

摘要

In Russian universities, the problem of distributing the departmental educational load is annually resolved. This problem belongs to the class of combinatorial discrete optimization problems. To solve some problems of this class, it is effective to use the selection sequence optimization algorithm developed by the authors earlier. This article provides a flowchart of this algorithm for the purpose of its visual presentation, which is aimed at further understanding of the material presented. Modeling the dynamics of the algorithm is carried out using a mathematical model built on the basis of one of the varieties of colored Petri nets - that is, on the J-net. The operating logic of this model is described in detail. A reachability tape has been built for this J-net. It contains 269 markings, some of which, representing the main nuances, are presented in the paper in table form. The reachability tape has a significant size even with a minimal non-trivial amount of simulated data, so unattainable markings are rejected by additional analysis of some inequalities sets. Due to the difficulty of contemplative analysis of inequalities’ systems, а software tool has been developed for solving these systems, whose algorithm has polynomial time complexity. Analysis of the reachability tape shows the correct operation of the optimization algorithm. Scientific novelty of the work is that for the first time, a reachability tape for the J-net has been constructed.
Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025;27(4):517-538
pages 517-538 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».