The Potential of Polymer Membranes for Recovery of Xenon from Medical Waste Gas Mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work is devoted to the evaluation of xenon permeability coefficients for a wide range of polymeric membrane materials, as well as the primary experimental verification of the calculation results for materials used in the production of gas separation membranes. Emphasis is placed on solving the problem of O2/Xe mixture separation as a base for xenon-containing waste medical gas mixtures where it is possible to recover xenon for its reuse. The xenon permeability coefficients were evaluated using a correlation approach, that relates the molecular properties of a gas to gas permeability, and available literature data on the permeability of other gases. The results obtained make it possible to distinguish two main groups of membrane polymers in the Robson diagram for O2/Xe gas pair: xenon-selective (polysiloxane-based rubbers and highly permeable functional polyacetylenes) and oxygen-selective (polyimides, PIMs, perfluorinated polymers). Industrial composite membrane MDK with a selective layer of silicone copolymer and laboratory composite membranes based on PSf and PVTMS were experimentally investigated. The obtained data demonstrate satisfactory convergence of the experimental values with the estimated ones. Based on the results obtained, MDK membrane can be recommended as xenon-selective for xenon recovery.

About the authors

V. V. Zhmakin

Topchiev Institute of Petrochemical Synthesis RAS

Email: mshalygin@ips.ac.ru
Russia, 119991, Moscow, Leninskiy prospekt, 29

S. Yu. Markova

Topchiev Institute of Petrochemical Synthesis RAS

Email: mshalygin@ips.ac.ru
Russia, 119991, Moscow, Leninskiy prospekt, 29

V. V. Teplyakov

Topchiev Institute of Petrochemical Synthesis RAS

Email: mshalygin@ips.ac.ru
Russia, 119991, Moscow, Leninskiy prospekt, 29

M. G. Shalygin

Topchiev Institute of Petrochemical Synthesis RAS

Author for correspondence.
Email: mshalygin@ips.ac.ru
Russia, 119991, Moscow, Leninskiy prospekt, 29

References

  1. Xenon gas market, 2020. Global industry trend analysis 2012 to 2017 and forecast 2017-2025. [Электронный источник] https://www.persistencemarketresearch. com/market-research/xenon-gas-market.asp (дата обращения: 01.11.2022).
  2. Sikora B.J., Wilmer, Ch.E., Greenfield M.L., Snurr R.Q. // Chemical Science. 2012. V. 3. № 7. P. 2217–2223.
  3. Chen L., Reiss P., Chong S. et al. // Nature Mater. 2014. V. 13. P. 954–960.
  4. Михайлов С.Е., Рябов Д.В. Способ получения высокообогащенного ксенонового концентрата (варианты). Патент РФ № 2692188C1, 2018.
  5. Peters N., Schmidt H. Xenon Recovery from Methane-Containing Gases, DE102014008770A1, 2014.
  6. Sergeeva M.S., Mokhnachev N.A., Shablykin D.N., Vorotyntsev A.V., Zarubin D.M., Atlaskin A.A., Trubyanov M.M., Vorotyntsev I.V., Vorotyntsev V.M., Petukov A.N. // J. Natural Gas Science and Engineering. 2021. V. 86. 103740.
  7. Гузеев В.В., Нестеренко А.А. Способ получения концентрата ксенона и криптона. Патент РФ № 2685138C1, 2018.
  8. Волокитин Л.Б. и др. Способ извлечения ксенона из газовой смеси. Патент РФ № 2259522C1, 2004.
  9. Dingley J., Mason R.S. // Anesthesia and Analgesia. 2007. V. 105. P. 1312–1318.
  10. Georgieff M., Marx Th., Baeder S. Anesthesia arrangement for recovering gaseous anesthetic agents. US Patent 5520169A, 1996.
  11. Derwall M., Coburn M., Rex S., Hein M., Rossaint R., Fries M. // Minerva Anestesiol. 2009. V. 75. P. 37–45.
  12. Быков М.В., Багаев В.Г., Амчеславский В.Г. // Педиатрическая фармакология. 2014. Т. 11. № 3. С. 42–47.
  13. Аркус М.Л. // Вопросы наркологии. 2020. № 9(192). С. 75–87.
  14. Буров Н.Е., Макеев Г.Н. Способ регенерации ксенона из газонаркотической смеси наркозных аппаратов и устройство для его осуществления. Патент РФ № 2049487С1, 1995.
  15. Потапов В.Н., Потапов С.В., Школин А.В., Потапов А.В. Блок концентрирования ксенона и способ его эксплуатации. Патент РФ № 2670635С9, 2018.
  16. Буров Н.Е. и др. Способ регенерации ксенона из газонаркотической смеси наркозных аппаратов и установка для его осуществления. Патент РФ № 2 149 033, 2000.
  17. Thallapally P., Elsaidi S.K., Ongari D., Xu W., Mohamed M.H., Haranczyk M. // Chemistry A European J. 2017. V. 23. P. 10 758–10 762.
  18. Banerjee D., Simon C.M., Elsaidi S.K., Haranczyk M., Thallapally P.K. // Chem. 2018. V. 4. P. 466–494.
  19. Kizzie A.C., Wong-Foy A.G., Matzger A.J. // Langmuir. 2011. V. 27. P. 6368–6373.
  20. Feng X.H., Zong Z.W., Elsaidi S.K., Jasinski J.B., Krishna R., Thallapally P.K., Carreon M.A. // J. American Chemical Society. 2016. V. 138. P. 9791–9794.
  21. Wu T., Feng X., Elsaidi S.K., Thallapally P.K., Carreon M.A. // Industrial & Engineering Chemistry Research. 2017. V. 56. P. 1682–1686.
  22. Wu T., Lucero J., Crawford J.M., Sinnwell M.A., Thallapally P.K., Carreon M.A. // J. Membrane Science. 2019. V. 573. P. 288–292.
  23. Wang X., Zhang Y., Wang X., Andres-Garcia E., Du P., Giordano L., Wang L., Hong Zh., Gu X., Murad S., Kapteijn F. // Angewandte Chemie. 2019. V. 131. P. 15 664–15 671.
  24. Wang X., Karakiliç P., Liu X., Shan M., Nijmejer A., Winnubst L., Gascon J., Kapteijn F. // ACS Applied Materials & Interfaces. 2018. V. 10. P. 33574–33580.
  25. Malankowska M., Martins C.F., Rho H.S., Neves L.A., Tiggelaar R.M., Crespo J.G., Pina M.P., Mallada R., Gardeniers H., Coelhoso I.M. // J. Membrane Science. 2018. V. 545. P. 107–115.
  26. Assfour B., Dawahra S. // Annals of Nuclear Energy. 2020. V. 148. 107730.
  27. Lagorsse S., Magalhaes F.D., Mendes A. // J. Membrane Science. 2007. V. 301. P. 29–38.
  28. Иевлев А.Л., Тепляков В.В., Дургарьян С.Г., Наметкин Н.С. // Доклады АН СССР. 1982. Т. 264. № 6. С. 1421–1424.
  29. Jensvold J.A., Jeanes T.O. Membrane for separation of xenon from oxygen and nitrogen and method of using same. US Patent 6168649, 2001.
  30. Budd P.M., Msayib K.J., Tattershall C.E., Ghanem B.S., Reynolds K.J., McKeown N.B., Fritsch D. // J. Membrane Science. 2005. V. 251. P. 263–269.
  31. Nakagawa T. Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. 1998. P. 821–834.
  32. Teplyakov V., Meares P. // Gas Separation & Purification. 1990. V. 4. P. 66–74.
  33. Malykh O.V., Golub A.Yu., Teplyakov V.V. // Advances in Colloid and Interface Science. 2011. V. 164. P. 89–99.
  34. Тепляков В.В. // Журн. Всесоюзного химического общества. 1987. Т. 2. № 6. С. 693.
  35. Zhmakin V.V., Teplyakov V.V. // Separation and Purification Technology. 2017. V. 186. P. 145–155.
  36. Teplyakov V.V., Shalygin M.G., Kozlova A.A., Netrusov A.I. // Petroleum Chemistry. 2018. V. 58. P. 949–957.
  37. Марковa С.Ю., Пелзер М., Шалыгин М.Г. // Мембраны и мембранные технологии. 2021. Т. 11. № 6. С. 477–484.
  38. Иевлев А.Л. Селектвиная газопроницаемость силан-силоксановых блок-сополимеров. Канд. Диссертация. М., ИНХС АН, 1985.
  39. Старанникова Л.Э., Тепляков В.В., Дургарьян С.Г. // Высокомолекулярные соединения. 1986. Т. 28. С. 1266–1270.
  40. Тепляков В.В., Дургарьян С.Г. // Высокомолекулярные соединения. 1984. Т. 26. С. 1498–1505.
  41. Fuoco A., Bekir S., Uyar T., Monteleone M., Esposito E., Muzzi C., Tocci E., Longo M., De Santo M.P., Lanč M., Freiss K., Vopička O., Izák P., Jansen J.C. // J. Membrane Science. 2020. V. 594. 117460.
  42. Stern S.A. // J. Membrane Science. 1994. V. 94. P. 1–65.
  43. Yampolskii Yu., Pinnau I., Freeman B.D. Eds., Materials Science of Membranes for Gas and Vapor Separation, Wiley, Chichester. 2006.
  44. Low Z.-X., Budd P.M., McKeown N.B., Patterson D.A. // Chem. Rev. 2018. V. 118. P. 5871.
  45. Pinnau I., He Z., Morisato A. // J. Membrane Science. 2004. V. 241. P. 363–369.
  46. Wang R., Cao C., Chung T.-S. // J. Membrane Science. 2002. V. 198. P. 259–271.
  47. Kim T.H., Koros W.J., Husk G.R., O’Brien K.C. // J. Membrane Science. 1988. V. 37. P. 45–62.
  48. Calle M., Doherty C.M., Hill A.J., Lee Y.M. // Macromolecules. 2013. V. 46. P. 8179–8189.
  49. Liu B., Dai Y., Robertson G.P., Guiver M.D., Hu W., Jiang Z. // Polymer. 2005. V. 46. P. 11279–11287.
  50. McHattie J.S., Koros W.J., Paul D.R. // Polymer. 1991. V. 32. P. 840–850.
  51. Shishatskii A.M., Yampol’skii Yu.P., Peinemann K.-V. // J. Membrane Science. 1996. V. 112. P. 275–285.
  52. Choi S.-H., Randová A., Vopička O., Lanč M., Fuoco A., Jansen J.C., Freiss K. // J. Membrane Science. 2022. V. 648. 120343.
  53. PermSelect [Электронный источник] https://www.permselect.com/membranes (дата обращения: 26.10.2022).
  54. Baker R.W. Membrane technology and applications. 3rd ed., Wiley, 2012. 575 p.
  55. Reid B.D., Ruiz-Trevino F.A., Musselman I.H., Balkus K.J., Ferraris J.P. // Chemistry of Materials. 2001. V. 13. P. 2366–2373.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (146KB)
4.

Download (104KB)

Copyright (c) 2023 В.В. Жмакин, С.Ю. Маркова, В.В. Тепляков, М.Г. Шалыгин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».