Testing of proton exchange composite membranes “polymer film-sulfounded polystyrene” in a direct methanol fuel cell at 60°C. Methanol crossover

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The coefficients of diffusion permeability of methanol through the synthesized composite membranes “polymer film-sulfonated polystyrene” and Nafion-115 membrane were measured. For several composite membranes with significantly different transport properties the diffusion flux of methanol (qdiff) through these membranes was calculated under the conditions of a direct methanol fuel cell (DMFC) at 60°C and 1–2 M concentration of the feed solution. Direct measurements of the crossover current and methanol crossover (qCVA) in DMFC based on these membranes were carried out by using the cyclic voltammetry method (CVA). It has been established that the qCVA values are on average 15% lower than the corresponding qdiff values calculated for each membrane based on its individual parameters (area, thickness, methanol permeability coefficient). The observed ratio qCVA<qdiff is proposed to be explained by the experimentally uncontrolled and, probably, incomplete oxidation of methanol at the cathode. Based on the obtained data, it can be concluded that without monitoring the degree of methanol oxidation at the DMFC cathode, the experimental values of the crossover qCVA can markedly differ from the calculated qdiff and the real values of the methanol crossover in the DMFC. A comparative study of performance of DMFCs based on synthesized composite membranes with significantly different transport properties and Nafion-115 membranes was carried out.It has been established that at 60°C and 1 M concentration of the feed solution, the methanol crossover value has practically no effect on the performance of the cells.

Авторлар туралы

D. Kritskaya

Branch of Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: dianakrit@gmail.com
Ресей, Chernogolovka, Moscow region, 142432

K. Novikova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dianakrit@gmail.com
Ресей, Chernogolovka, Moscow region, 142432

E. Sanginov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dianakrit@gmail.com
Ресей, Chernogolovka, Moscow region, 142432

A. Ponomarev

Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: dianakrit@gmail.com
Ресей, Chernogolovka, Moscow region, 142432

Әдебиет тізімі

  1. Kraytsberg A., Ein-EliY. // Energ. Fuel. 2014. V. 28. P. 7303.Wang Y., Diaz D.F.R., Chen K.S., Wang Z., Adroher X.C. // Materials Today. 2020. V. 32. P. 178.
  2. Филиппов С.П., Ярославцев А.Б. // Успехи химии. 2021. Т. 90. № 6. C. 627 (англоязычнаяверсия: Filippov S.P., Yaroslavtsev A.B. // Russ. Chem. Rev. 2021. V. 90. № 6. P. 627).
  3. Carrette L., Friedrich K.A., Stimming U. // Fuel Cells. 2001. V. 1. № 1. P. 5.
  4. Aricò A.S., Srinivasan S., Antonucci V. // Fuel Cells. 2001. V. 1, № 2. P. 133.
  5. Alias M.S., Kamarudin S.K., Zainoodin A.M., Masdar M.S. // Int. J. Hydrogen Energ. 2020. V. 45. № 38. P. 19620.
  6. Zhou J., Cao J., Zhang Y., Liu J., Chen J., Li M., Wang W., Liu X. // Renew. Sust. Energ. Rev. 2021. V. 138. AN. 110660.
  7. Mauritz K.A., Moore R.B. // Chem. Rev. 2004. V. 104. P. 4535.
  8. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987.
  9. Deluca N.W., Elabd Y.A. // J. Polym. Sci. Pol. Phys. 2006. V. 44. P. 2201. Shin D.W., Guiver M.D., Lee Y.M. // Chem. Rev. 2017. V. 117. P. 4759.
  10. Byun G.H., Kim J.A., Kim N.Y., Cho Y.S., Park C.R. // Materials Today Energy. 2020. V. 17. AN. 100483.
  11. Nasef M.M., Gürsel S.A., Karabell, D., Güven O. // Progress in Polymer Sci. 2016. V. 63. P. 1.
  12. Nasef M.M. // J. Appl. Membr. Sci. Techn. 2022. V. 26. № 1. P. 51.
  13. Nasef M.M., Zubir N.A., Ismail A.F., Khayet M., Dahlan K.Z.M., Saidi H., Rohani R., Ngah T.I.S., Sulaiman N.A. // J. Membrane Sci. 2006. V. 268. P. 96.
  14. Gürsel S.A., Gubler L., Gupta B., Scherer G.G. // Adv. Polym. Sci. 2008. V. 215. P. 157.
  15. Yamaki T., Sawada S., Asano M., Maekawa Y., Yoshida M., Gubler L., Alkan-Gürsel S., Scherer G.G. // ECS Transactions. 2009. V. 25. P. 1439.
  16. Голубенко Д.В., Юрова П.А., Десятов А.В., Стенина И.А., Косарев С.А., Ярославцев А.Б. // Мембраны и мембранные технологи. 2022. Т. 12. № 6. С. 452 (англоязычная версия: Golubenko D.V., Yurova P.A., Desyatov A.V., Stenina I.A., Kosarev S.A., YaroslavtsevA.B. // Membr. Membr. Technol. 2022. V. 4. № 6. P. 398).
  17. Пономарев А.Н., Абдрашитов Э.Ф., Крицкая Д.А., Бокун В.Ч., Сангинов Е.А., Добровольский Ю.А. // Электрохимия. 2017. Т. 53. № 6. С. 666. (англоязычнаяверсия: PonomarevA.N., AbdrashitovE .F., Kritskaya D.A., Bokun V.C., Sanginov E.A., Dobrovol’skii Y.A. // Russ. J. Electrochem. 2017. V. 53. № 6. P. 589)
  18. Abdrashitov E.F., Bokun V.C., Kritskaya D.A., Sanginov E.A., Ponomarev A.N., Dobrovolsky Y.A. //Solid State Ionics. 2013. V. 251. P. 9.
  19. Abdrashitov E.F., Kritskaya D.A., Bokun V.C., Ponomarev A.N., Novikova K.S., Sanginov E.A., Dobrovolsky Y.A. // Solid State Ionics. 2016. V. 286. P. 135.
  20. Ren X., Springer T.E., Zawodzinski T.A., Gottesfeld S. // J.Electrochem. Soc. 2000. V. 147. P. 466.
  21. Almheiri S., Liu H. // Int. J. Hydrogen Energy. 2015. V. 40. P. 10969.
  22. Génevé T., Turpin C., Régnier J., Rallières O., Verdu O., Rakotondrainibe A., Lombard K. // Fuel Cells. 2017. V. 17. № 2. P. 210.
  23. Braz B.A., Oliveira V.B., Pinto A.M.F.R. // Energy. 2020. V. 208. P. 112394.
  24. Ponomarev A.N., Kritskaya D.A., Abdrashitov E.F., Bokun V.C., Sanginov E.A., Novikova K.S., Dremova N.N., Dobrovolsky Y.A. // J. Appl. Pol. Sci. 2020. V. 137. P. 49563.
  25. Новикова К.С., Абдрашитов Э.Ф., Крицкая Д.А., Пономарев А.Н., Сангинов Е.А., Добровольский Ю.А. // Электрохимия. 2021. Т. 57. № 11. С. 645. (англоязычная версия: Novikova K.S., Abdrashitov E.F., Kritskaya D.A., Ponomarev A.N., Sanginov E.A., Dobrovol’skii Yu.A.// Russ. J.Electrochem.2021. V. 57. № 11. P. 1047)
  26. Wells C.F. // Thermochim. Acta. 1992. V. 200. P. 443.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».