Gas permeability of membranes based on crystallizable poly(hexadecylmethylsiloxane)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, the membranes based on crystallizable poly(hexadecy-l-methyl-siloxane) (PHDMS) were obtained and their gas transport properties in relation to a number of light hydrocarbons were investigated with a focus on n-butane and methane permeability and selectivity. A first-order phase transition (crystallization of side alkyl chains) with a melting temperature (Tm) of 26°C was detected for the PHDMS-membranes. It was shown that the membrane transport properties were significantly influenced by their phase state. The gas permeability, diffusivity and solubility undergone a sudden change in the vicinity of Tm. Thus, a decrease in temperature from 30° to 20°C leads to a decrease in the hydrocarbons permeability coefficients by an order of magnitude. On one hand, the membranes n-butane/methane selectivity at a temperature T > Tm did not exceed 25, which is comparable with the results for previously studied polyalkylmethylsiloxanes with shorter alkyl chains. On the other, the n-butane/methane selectivity of semicrystalline membranes (T < Tm), despite a noticeable reduction in gas permeability, can reach selectivity values of ~150.

Sobre autores

S. Sokolov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: sokolovste@ips.ac.ru
29 Leninsky pr., Moscow, 119991, Russia

E. Grushevenko

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

29 Leninsky pr., Moscow, 119991, Russia

A. Malakhov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

29 Leninsky pr., Moscow, 119991, Russia

Bibliografia

  1. Grushevenko E.A., Borisov I.L., Volkov A.V. // Petrol. Chem. 2021. V. 61. № 9. P. 959–976.
  2. Yang J., Vaidya M.M., Harrigan D.J., Duval S.A., Hamad F., Bahamdan A.A. // Sep. Purif. Tech. 2020. V. 242. P. 116774.
  3. Mushardt H., Müller M., Shishatskiy S., Wind J., Brinkmann T. // Membranes. 2016. V. 6. № 1. P. 16.
  4. Schultz J., Peinemann K.-V. // J. Membr. Sci. 1996. V. 110. № 1. P. 37–45.
  5. Khanbabaei G., Vasheghani-Farahani E., Rahmatpour A. // Chem. Eng. J. 2012. V. 191. P. 369–377.
  6. Grushevenko E.A., Borisov I.L., Bakhtin D.S., Bondarenko G.N., Levin I.S., Volkov A.V. // React. Funct. Polym. 2019. V. 134. P. 156–165.
  7. Grushevenko E.A., Borisov I.L., Knyazeva A.A., Volkov V.V., Volkov A.V. // Sep. Purif. Tech. 2020. V. 241. P. 116696.
  8. Espenschied B., Schulz R.C. // Makromol. Chem. Rapid Commun. 1983. V. 4. P. 633.
  9. Mogri Z., Paul D.R. // Polymer. 2001. V. 42. № 6. P. 2531.
  10. Mogri Z., Paul D.R. // Polymer. 2001. V. 42. № 6. P. 7781.
  11. López-Carrasquero F., de Ilarduya A.M., Cárdenas M., Carrillo M., Arnal M.L., Laredo E., Torres C., Méndez B., Müller A.J. // Polymer. 2003. V. 44. № 17. P. 4969–4979.
  12. Rim P.B., Rasoul H.A.A., Hurley S.M., Orler E.B. Scholsky K.M. // Macromolecules. 1987. V. 20. № 1. P. 208.
  13. Borisov I.L., Grushevenko E.A., Anokhina T.S., Bakhtin D.S., Levin I.S., Bondarenko G.N., Volkov V.V., Volkov A.V. // Mater. Today Chem. 2021. V. 22. P. 10059.
  14. Sokolov S.E., Grushevenko E.A., Volkov V.V., Borisov I.L., Markova S.Yu., Shalygin M.G., Volkov A.V. // Membr. Membr. Technol. 2022. V. 4. № 6. P. 377–384.
  15. Malakhov A.O., Sokolov S.E., Grushevenko E.A., Volkov V.V. // Membranes. 2023. V. 13. № 1. P. 124.
  16. Stern S.A., Shah V.M., Hardy B.J. // J. Polym. Sci. B. 1987. V. 25. № 6. P. 1263–1298.
  17. Matteucci S., Yampolskii Y., Freeman B.D., Pinnau I. in: Materials Science of Membranes for Gas and Vapor Separation, Ed. by Yampolskii Y., Pinnau I., Freeman B.D. (John Wiley & Sons, 2006), Chap. 1, Chichester.
  18. Yampolskii Y., Starannikova L., Belov N., Bermeshev M., Gringolts M., Finkelshtein E. // J. Membr. Sci. 2014. V. 453. P. 532–545.
  19. Van Krevelen D.W., Nijenhuis K.Te. Properties of polymers. Elsevier, Amsterdam, 2009. Chap. 18.
  20. Teplyakov V., Meares P. // Gas Sep. Purif. 1990. V. 4. № 2. P. 66–74.
  21. Sarkar A., Mehra M., Dasgupta D., Negi L., Saxen A. // Macromolecules. 2018. V. 51. № 22. P. 9354–9359.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).