Selection of Anion Exchange Membranes for Optimization of Electrodialytic Extraction of Tartrates from Aqueous Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The challenge of extracting organic acids using membrane technologies highlights the critical issue of reducing production costs and improving environmental efficiency in food and medical industries. Organic acids play a key role in manufacturing a wide range of products. Electrodialysis (ED) has established itself as a highly efficient, environmentally friendly, and economical extraction method, particularly for tartrates. During extensive testing focused on extracting tartrates from solutions via electrodialysis, a comparative study of three types of ion-exchange membranes was conducted: ASE, CJMA-3, and MA-41P. Results showed significant differences in efficiency and energy consumption among these membranes. Data were obtained in NaxH(2–x)T solution with pH 3.0, characterized by the maximum molar fraction of monovalent tartrate anions. It was demonstrated that the ASE membrane exhibits inferior mass transfer characteristics and higher energy consumption during the electrodialytic extraction of tartrates compared to the CJMA-3 membrane, despite having the highest experimental limiting current values. The MA-41P membrane, in turn, demonstrates high mechanical strength, resistance to damage, and extended service life. However, its efficiency in tartrate extraction over the same electrodialysis period proved lower than that of the CJMA-3 membrane. Thus, CJMA-3 is preferable for ED processing of tartrate-containing solutions.

About the authors

O. A. Yurchenko

Kuban State University

Email: olesia93rus@mail.ru
149 Stavropol str., Krasnodar, 350040, Russia

K. V. Brizhan

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

N. D. Pismenskaya

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

References

  1. Jiang C., Wang Y., Xu T. // Membrane Technologies for Biorefining. London: Academic Press, 2016. P. 135.
  2. Igliński B., Kiełkowska U., Piechota G. // Clean Technol. Environ. Policy. 2022. V. 24. № 7. P. 2061.
  3. Hülber-Beyer É., Bélafi-Bakó K., Nemestóthy N. // Chem. Pap. 2021. V. 75. № 10. P. 5223.
  4. Mancini E., Mansouri S.S., Gernaey K.V., Luo J., Pinelo M. // Crit. Rev. Environ. Sci. Technol. 2019. V. 50. № 18. P. 1829.
  5. Kim N., Jeon J., Chen R., Su X. // Chem. Eng. Res. Des. 2022. V. 178. P. 267.
  6. Kurzrock T., Weuster-Botz D. // Biotechnol. Lett. 2010. V. 32. P. 331.
  7. Nam H.-G., Park C., Jo S.-H., Suh Y.-W., Mun S. // Process Biochem. 2012. V. 47. № 12. P. 2418.
  8. López-Garzón C.S., Straathof A.J.J. // Biotechnol. Adv. 2014. V. 32. № 5. P. 873.
  9. Демина Н.Г., Румянцева Н.Ф., Антонова С.В., Лукьянов Д.А., Федоров А.С., Бондаренко П.Ю., Гулевич А.Ю., Дебабов В.Г. // Биотехнология. 2015. № 6. С. 52.
  10. Zhao J., He G., Liu G., Pan F., Wu H., Jin W., Jiang Z. // Prog. Polym. Sci. 2018. V. 80. P. 125.
  11. Fehér J., Cervenanský I., Václavík L., Markoš J. // Sep. Purif. Technol. 2020. V. 235. P. 116222.
  12. Huang C., Xu T., Zhang Y., Xue Y., Chen G. // J. Membr. Sci. 2007. V. 288. № 1–2. P. 1.
  13. Yang H.K., Moon S.H. // J. Chem. Technol. Biotechnol. 2010. V. 76. P. 169.
  14. Wang Q., Cheng G., Sun X., Jin B. // Process Biochem. 2006. V. 41. № 1. P. 152.
  15. Wang X., Wang Y., Zhang X., Xu T. // Bioresour. Technol. 2012. V. 125. P. 165.
  16. Sun X., Lu H., Wang J. // J. Clean. Prod. 2017. V. 143. P. 250.
  17. Igliński B., Piechota G., Iwański P. // Sustain. Chem. Eng. 2020. V. 1. P. 62.
  18. Lameloise M.-L., Lewandowski R. // J. Membr. Sci. 2012. V. 403–404. P. 196.
  19. Prochaska K., Woźniak-Budych M.J. // J. Membr. Sci. 2014. V. 469. P. 428.
  20. Ferrer J.S.J., Laborie S., Durand G., Rakib M. // J. Membr. Sci. 2006. V. 280. № 1–2. P. 509.
  21. Jaime-Ferrer J.S., Couallier E. // J. Membr. Sci. 2008. V. 325. № 2. P. 528.
  22. Wang Y., Zhang N., Huang C., Xu T. // J. Membr. Sci. 2011. V. 385–386. P. 226.
  23. Ttivedi G., Shah B., Adhikary S., Indusekhar V., Rangarajan R. // React. Funct. Polym. 1997. V. 32. № 2. P. 209.
  24. Liu X., Li Q., Jiang C., Lin X., Xu T. // J. Membr. Sci. 2015. V. 482. P. 76.
  25. Rottiers T., Van der Bruggen B., Pinoy L. // J. Ind. Eng. Chem. 2017. V. 54. P. 190.
  26. Liu G., Wu D., Chen G., Halim R., Liu J., Deng H. // Sep. Purif. Technol. 2021. V. 263. P. 118403.
  27. Zhang K., Wang M., Wang D., Gao C. // J. Membr. Sci. 2009. V. 341. № 1–2. P. 246.
  28. Rózsenberszki T., Komáromy P., Hülber-Beyer É., Bakonyi P., Nemestóthy N., Bélafi-Bakó K. // Chem. Eng. Res. Des. 2021. V. 175. P. 348.
  29. Wang Y., Jiang C., Bazinet L., Xu T. // Separation of Functional Molecules in Food by Membrane Technology. London: Academic Press, 2019. P. 349.
  30. Vera E., Ruales J., Dornier M., Sandeaux J., Persin F., Pourcelly G., Vaillant F., Reynes R. // J. Food Eng. 2003. V. 59. № 4. P. 361.
  31. Faucher M., Henaux L., Chaudron C., Mikhaylin S., Margni M., Bazinet L. // J. Food Eng. 2020. V. 273. P. 109802.
  32. Serre E., Rozoy E., Pedneault K., Lacour S., Bazinet L. // Sep. Purif. Technol. 2016. V. 163. P. 228.
  33. Comuzzo P., Battistutta F. // Red Wine Technology. London: Academic Press, 2019. P. 17.
  34. Pasechnaya E., Tsygurina K., Ponomar M., Chuprynina D., Nikonenko V., Pismenskaya N. // Membranes. 2023. V. 13. № 1. P. 84.
  35. El Rayess Y., Castro-Muñoz R., Cassano A. // Trends Food Sci. Technol. 2024. V. 147. P. 104453.
  36. Balster J., Punt I., Stamatialis D.F., Lammers H., Verver A.B., Wessling M. // J. Membr. Sci. 2007. V. 303. № 1–2. P. 213.
  37. Merkel A., Ashrafi A.M., Ečer J. // J. Membr. Sci. 2018. V. 555. P. 185.
  38. Nemati-Amirkolaii K., Romdhana H., Lameloise M.L. // Sustainability. 2019. V. 11. № 16. P. 4492.
  39. Vecino X., Reig M., Gibert O., Valderrama C., Cortina J.L. // ACS Sustain. Chem. Eng. 2020. V. 8. № 35. P. 13387.
  40. Conidi C., Cassano A., Caiazzo F., Drioli E. // J. Food Eng. 2017. V. 195. P. 1.
  41. Ghalloussi R., Garcia-Vasquez W., Chaabane L. // J. Membr. Sci. 2013. V. 436. P. 68.
  42. Wu-Tiu-Yen J., Lameloise M.L., Petit A., Lewandowski R., Broyart B., Fargues C. // Sep. Sci. Technol. 2020. V. 56. № 10. P. 1752.
  43. Fidaleo M., Ventriglia G. // Foods. 2022. V. 11. № 12. P. 1770.
  44. Chandra A., Chattopadhyay S. // Colloids Surf. A Physicochem. Eng. Asp. 2020. V. 589. P. 124395.
  45. Phukan R., Guttierez L., De Schepper W., Vanoppen M., Verbeken K., Raes K., Verliefde A., Cornelissen E. // Sep. Purif. Technol. 2023. V. 322. P. 124247.
  46. Laucirica G., Pérez-Mitta G., Toimil-Molares M.E., Trautmann C., Marmisollé W.A., Azzaroni O. // J. Phys. Chem. C. 2019. V. 123. № 47. P. 28997.
  47. Zhang Y., Pinoy L., Meesschaert B., Van der Brug- gen B. // AIChE J. 2011. V. 57. № 8. P. 2070.
  48. Wang Y., Zhang Z., Jiang C., Xu T. // Sep. Purif. Technol. 2016. V. 170. P. 353.
  49. Yan H., Wang Y., Xu T. // Proceedings of the 5th International Conference on Sustainable Chemical Production Process Engineering (SCPPE). 2019. P. 65.
  50. Pismenskaya N., Rybalkina O., Solonchenko K., Pasechnaya E., Sarapulova V., Wang Y., Jiang C., Xu T., Nikonenko V. // Polymers. 2023. V. 15. № 10. P. 2288.
  51. Монополярные мембраны. URL: http://azotom.ru/monopolyarnye-membrany/ (дата обращения: 01.013.2024).
  52. Kozaderova O.A., Kim K.B., Gadzhiyevа C.S., Niftaliev S.I. // J. Membr. Sci. 2020. V. 604. P. 118081.
  53. Васильева В.И., Мещерякова Е.Е., Фалина И.В., Кононенко Н.А., Бровкина М.А., Акберова Э.М. // Мембраны и мембранные технологии. 2023. Т. 13. № 3. С. 163.
  54. Berezina N.P., Timofeev S.V., Kononenko N.A. // J. Membr. Sci. 2002. V. 209. P. 509.
  55. Pismenskaya N.D., Rybalkina O.A., Kozmai A.E., Tsygurina K.A., Melnikova E.D., Nikonenko V.V. // J. Membr. Sci. 2020. V. 601. P. 117920.
  56. Titorova V.D., Mareev S.A., Gorobchenko A.D., Gil V.V., Nikonenko V.V., Sabbatovskii K.G., Pismenskaya N.D. // J. Membr. Sci. 2021. V. 624. P. 119036.
  57. Lide R. // CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2005.
  58. Sarapulova V., Nevakshenova E., Pismenskaya N., Dammak L., Nikonenko V. // J. Membr. Sci. 2015. V. 479. P. 28.
  59. Dukhin S.S. // Adv. Colloid Interface Sci. 1991. V. 35. P. 173.
  60. Maletzki F., Rosler H.-W., Staude E. // J. Membr. Sci. 1992. V. 71. № 1–2. P. 105.
  61. Martí-Calatayud M.C., Ruiz-García M., Pérez-Herranz V. // Sep. Purif. Technol. 2025. V. 354. P. 128951.
  62. Belashova E D., Pismenskaya N.D., Nikonenko V.V. // J. Membr. Sci. 2017. V. 542. P. 177–185.
  63. Гельферих Ф. М.: Изд-во Иностр. лит., 1962. С. 490.
  64. Gorobchenko A., Yurchenko O., Mareev S., Zhang C., Pismenskaya N., Nikonenko V. // J. Water Process Eng . 2024. V. 64. P. 105711.
  65. Rybalkina O.A., Sharafan M.V., Nikonenko V.V., Pismenskaya N.D. // J. Membr. Sci. 2022. V. 651. P. 120449.
  66. Pismenskaya N.D., Nikonenko V.V., Melnik N.A., Shevtsova K.A., Belova E.I., Pourcelly G., Cot D., Dammak L., Larchet C. // J. Phys. Chem. B. 2012. V. 116. № 7. P. 2145–2161.
  67. Рыбалкина О.А., Цыгурин К.А., Сарапулова В.В., Мареев С.А., Никоненко В.В., Письменская Н.Д. // Мембраны и мембранные технологии. 2019. Т. 9. № 2. С. 131–145.
  68. Pine S.H. // Organic Reactions. 2011. P. 403–464.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).