Pervaporation Separation of Phenol from Water on Polyalkylmethylsiloxane Membranes: the Effect of the Length of the Side Substituent

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Phenol and its derivatives pose a significant environmental hazard even at low concentrations, making their efficient removal from industrial wastewater an urgent challenge. Pervaporation using selective membranes represents a promising energy-efficient approach for the concentration and recovery of phenol from aqueous streams. In this work, for the first time, a comprehensive investigation was carried out into the effect of alkyl side-chain length in poly(alkylmethylsiloxanes) on their affinity toward phenol and water, as well as on the transport properties of composite membranes in pervaporation. Hansen solubility parameter calculations revealed that the synthesized polymers are hydrophobic and exhibit a higher affinity for phenol than for water. However, with increasing alkyl chain length, the polymer–phenol interaction parameter decreases due to a reduced contribution of polar interactions. The highest phenol partition coefficients (up to 2.16 g/g) and the smallest polymer–phenol interaction radii were achieved for polymers bearing alkyl substituents with 6–7 carbon atoms. Membranes based on these polymers demonstrated the highest selectivity (~35) and separation factor (~11), performance metrics that are comparable to or exceed those of certain literature-reported analogues in terms of the selectivity–permeability ratio.

About the authors

T. N Rokhmanka

A.V. Topchiev Institute of petrochemical synthesis RAS

Email: rokhmankatn@ips.ac.ru
Moscow, Russian Federation

E. A Grushevenko

A.V. Topchiev Institute of petrochemical synthesis RAS

Moscow, Russian Federation

D. L Pak

A.V. Topchiev Institute of petrochemical synthesis RAS

Moscow, Russian Federation

I. L Borisov

A.V. Topchiev Institute of petrochemical synthesis RAS; Federal Research Center of the Kazan Scientific Center of the Russian Academy of Sciences

Moscow, Russian Federation; Kazan, Russian Federation

S. D Bazhenov

A.V. Topchiev Institute of petrochemical synthesis RAS

Moscow, Russian Federation

References

  1. Uryu M. et al. // Angewandte Chemie. 2020. V. 132. № 16. P. 6613–6616.
  2. Kujawski W. et al. // Desalination. 2004. V. 163. № 1–3. P. 287–296.
  3. Jia S. et al. // Angewandte Chemie. 2024. V. 136. № 46. P. e202410972.
  4. Deng W. et al. // Green Energy & Environment. 2023. V. 8. № 1. P. 10–114.
  5. Guo C. et al. // Journal of Cleaner Production. 2019. V. 211. P. 380–386.
  6. Kujawski W. et al. // Separation and Purification Technology. 2004. V. 40. № 2. P. 123–132.
  7. Mohd A. // International Journal of Environmental Analytical Chemistry. 2022. V. 102. № 6. P. 1362–1384.
  8. Albuquerque B.R. et al. // Food & function. 2021. V. 12. № 1. P. 14–29.
  9. Gardziella A., Pilato L.A., Knop A. Phenolic resins: chemistry, applications, standardization, safety and ecology, Springer Science & Business Media, 2013.
  10. Agarry S.E., Durojaiye A.O., Solomon B.O. // International Journal of Environment and Pollution. 2008. V. 32. № 1. P. 12–28.
  11. Krastanov A., Alexieva Z., Yemendzhiev H. // Engineering in Life Sciences. 2013. V. 13. № 1. P. 76–87.
  12. Hao X., Pritzker M., Feng X. // Journal of Membrane Science. 2009. V. 335. № 1–2. P. 96–102.
  13. Basha K.M., Rajendran A., Thangavelu V. // Asian J Exp Biol Sci. 2010. V. 1. № 2. P. 219–234.
  14. Villegas L.G.C. et al. // Current Pollution Reports. 2016. V. 2. № 3. P. 157–167.
  15. Gai H. et al. // Chemical Engineering Journal. 2017. V. 327. P. 1093–1101.
  16. Cui P. et al. // Journal of Cleaner Production. 2017. V. 142. P. 2218–2226.
  17. Saputera W.H. et al. // Catalysts. 2021. V. 11. № 8. P. 998.
  18. Qu Y. et al. // Separation and Purification Technology. 2022. V. 280. P. 119915.
  19. da Gama B.M.V. et al. // Journal of Cleaner Production. 2018. V. 201. P. 219–228.
  20. Cao X., Wang K., Feng X. // Journal of Membrane Science. 2021. V. 623. P. 119043.
  21. Sang C. et al. // Green Energy & Environment. 2025.
  22. Wang H. et al. // Separation and Purification Technology. 2020. V. 245. P. 116851.
  23. Sinha B. et al. // Journal of applied polymer science. 2006. V. 101. № 3. P. 1857–1865.
  24. Djebbar M. et al. // Applied Water Science. 2012. V. 2. № 2. P. 77–86.
  25. Banat F.A. et al. // Environmental pollution. 2000. V. 107. № 3. P. 391–398.
  26. Dehmani Y. et al. // Journal of water process engineering. 2022. V. 49. P. 102965.
  27. Özkaya B. // Journal of hazardous materials. 2006. V. 129. № 1–3. P. 158–163.
  28. Bakhshi A., Mohammadi T., Aroujalian A. // Journal of Applied Polymer Science. 2008. V. 107. № 3. P. 1777–1782.
  29. Roostaei N., Tezel F.H. // Journal of environmental management. 2004. V. 70. № 2. P. 157–164.
  30. Li D. et al. // Chemical Engineering Research and Design. 2018. V. 132. P. 424–435.
  31. Sang C. et al. // Industrial & Engineering Chemistry Research. 2024. V. 63. № 34. P. 14983–15001.
  32. Li P.P. et al. // Journal of Membrane Science. 2021. V. 624. P. 119104.
  33. Liu C. et al. // Industrial & Engineering Chemistry Research. 2023. V. 62. № 3. P. 1523–1532.
  34. Liu Y. et al. // Journal of the American Chemical Society. 2023. V. 145. № 14. P. 7718–7723.
  35. Wang F. et al. // Journal of Membrane Science. 2024. V. 698. P. 122615.
  36. Wu P. et al. // Journal of Membrane Science. 2001. V. 190. № 2. P. 147–157.
  37. Yahaya G.O. // Separation Science and Technology. 2009. V. 44. № 12. P. 2894–2914.
  38. Rahmani S. et al. // Polymer–Plastics Technology and Materials. 2019. V. 58. № 3. P. 305–315.
  39. Dafforn K.A., Lewis J.A., Johnston E.L. // Marine pollution bulletin. 2011. V. 62. № 3. P. 453–465.
  40. Khan R. et al. // Separation and Purification Technology. 2021. V. 256. P. 117804.
  41. Maciejewski H. et al. // Reactive and Functional Polymers. 2014. V. 83. P. 144–154.
  42. Bennett M. et al. // Journal of membrane science. 1997. V. 137. № 1–2. P. 63–88.
  43. Brazinha C., Barbosa D.S., Crespo J.G. // Green Chemistry. 2011. V. 13. № 8. P. 2197–2203.
  44. Valério R., Brazinha C., Crespo J.G. // Membranes. 2022. V. 12. № 8. P. 801.
  45. Borisov I.L., Grushevenko E.A., Anokhina T.S. et al. // Materials Today Chemistry. 2021. V. 22. P. 100598.
  46. Grushevenko E.A., Podtynnikov I.A., Golubev G.S. et al. // Membranes and membrane technologies. 2018. V. 8. № 5. P. 334–342.
  47. Brookes P.R., Livingston A.G. // Journal of Membrane Science. 1995. V. 104. № 1–2. P. 119–137.
  48. Yushkin A. et al. // Reactive and Functional Polymers. 2015. V. 86. P. 269–281.
  49. Van Krevelen D.W., Te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, 2009.
  50. Flory P.J. // The Journal of Chemical Physics. 1950. V. 18. № 1. P. 108–111.
  51. Bokobza L. // Composite Interfaces. 2006. V. 13. № 4–6. P. 345–354.
  52. Rokhmanka T.N. et al. // Applied Sciences. 2023. V. 13. № 6. P. 3827.
  53. Grushevenko E.A. et al. // Membranes and Membrane Technologies. 2023. V. 5. № 6. P. 394–404.
  54. Hansen C.M. Hansen solubility parameters: a user’s handbook. CRC press, 2007.
  55. Owen M.J. // Macromolecular Rapid Communications. 2021. V. 42. № 5. P. 2000360.
  56. Brookes P.R., Livingston A.G. // Journal of Membrane Science. 1995. V. 104. № 1–2. P. 119–137.
  57. George S.C., Thomas S. // Progress in Polymer science. 2001. V. 26. № 6. P. 985–1017.
  58. Smedes F. et al. // Environmental science & technology. 2009. V. 43. № 18. P. 7047–7054.
  59. Rubinstein M., Colby R.H. Polymer physics. Oxford university press, 2003.
  60. Grushevenko E.A. et al. // React. Funct. Polym. 2019. V. 134. P. 156–165.
  61. Sheima Y. et al. // Macromol. 2021. V. 54. P. 5737–5749.
  62. Jin M.Y. et al. // Journal of Membrane Science. 2018. V. 549. P. 638–648.
  63. Grushevenko E. et al. // Water. 2024. V. 17. № 1. P. 60.
  64. Miller J.A. et al. // Macromolecules. 1985. V. 18. № 1. P. 32–44.
  65. Pan Y. et al. // Angewandte Chemie International Edition. 2022. V. 61. № 6. P. e202111810.
  66. Sang C. et al. // Materials Horizons. 2024. V. 11. № 19. P. 4681–4688.
  67. Alomair A.A. // Journal of Materials Chemistry A. 2015. V. 3. № 18. P. 9799–9806.
  68. Mao H. et al. // Journal of Membrane Science. 2021. V. 638. P. 119611.
  69. Li D. et al. // Applied Surface Science. 2018. V. 427. P. 288–297.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).