Reagent-Free Methods for Reducing the Amount of Concentrate from Reverse Osmosis Plants
- Authors: Smirnov A.A.1, Smirnov V.B.2
-
Affiliations:
- National Research University „MPEI“
- Mediana-Filter Research and Production Company JSC
- Issue: Vol 15, No 1 (2025)
- Pages: 76-86
- Section: Articles
- URL: https://journal-vniispk.ru/2218-1172/article/view/294908
- DOI: https://doi.org/10.31857/S2218117225010069
- EDN: https://elibrary.ru/LAKUFY
- ID: 294908
Cite item
Abstract
Of all developed water desalination processes, reverse osmosis takes the leading place - 69% of the world’s fresh water production is attributed to reverse osmosis plants, one of the efficiency criteria of which is the amount of concentrate produced. The article describes some modern baromembrane reagentless methods of reducing the amount of concentrate of reverse osmosis plants, the main criterion for the selection of which is the experience of their industrial application. Such processes as forward osmosis, pressure assisted forward osmosis, osmotically assisted reverse osmosis, semi-batch reverse osmosis, pulse flow reverse osmosis are considered, their working principle and results of practical application in industry or large-scale pilot tests are given.
Full Text

About the authors
A. A. Smirnov
National Research University „MPEI“
Author for correspondence.
Email: SmirnovAlAlex@mpei.ru
Russian Federation, Krasnokazarmennaya, 14, Moscow, 111250
V. B. Smirnov
Mediana-Filter Research and Production Company JSC
Email: Smirnov@mediana-filter.ru
Russian Federation, 1 Tkatskaya St., Moscow, 105318
References
- Jones E., Qadir M., van Vliet M.T.H., Smakhtin V., Kang S. The state of desalination and brine production: A global outlook // Sci. Total Environ. 2019. V. 657. P. 1343.
- McGinnis R.L., Elimelech M. Energy requirements of ammonia–carbon dioxide forward osmosis desalination // Desalination. 2007. V. 207. P. 370.
- Xu Y., Zhu Y., Chen Z., Zhu J., Chen G. A Comprehensive Review on Forward Osmosis Water Treatment: Recent Advances and Prospects of Membranes and Draw Solutes // Int. J. Environ. Res. Public Health. 2022. V. 19. P. 8215.
- Abounahia N., Ibrar I., Kazwini T., Altaee A., Samal A.K., Zaidi S.J., Hawari A.H. Desalination by the forward osmosis: Advancement and challenges // Sci. Total Environ. 2023. V. 886. P. 163901.
- FO plant completes 1-year of operation. Water Desalination Report: 2–3. 15 Nov 2010. URL: https://www.desalination.com/articles/fo-plant-completes-1-year-of-operation (дата обращения: 15.09.2024).
- Altaee A., Braytee A., Millar G.J., Naji O. Energy efficiency of hollow fibre membrane module in the forward osmosis seawater desalination process // J. Membr. Sci. 2019. V. 587. P. 117165.
- Forward Osmosis – A Brief Introduction. Water Today. 2017. URL: https://idadesal.org/wp-content/uploads/2018/11/140824-Nicoll-IDA-Whte-Paper-Forward-Osmosis-A-Brief-Introduction.pdf (дата обращения: 30.09.2024).
- Андрианов А.П., Янцен О.В., Ефремов Р.В. Прямой осмос сегодня: перспективы и ограничения // Мембраны и мембранные технологии. 2023. Т. 13. № 4. С. 312.
- Blandin G., Verliefde A., Tang C.Y., Childress A.E., Le-Clech P. Validation of assisted forward osmosis (AFO) process: impact of hydraulic pressure // Journal of membrane science. 2013. V. 447. P. 1.
- FilmTec™ Reverse Osmosis Membranes Technical Manual. URL: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/RO-NF-FilmTec-Manual-45-D01504-en.pdf (дата обращения: 04.10.2024).
- Toray sea water reverse osmosis membranes. URL: https://www.water.toray/products/ro/#sea-water (дата обращения: 30.09.2024).
- Toyobo MC membrane module for brine concentration. URL: https://www.toyobo-mc.jp/wordpress/wp-content/uploads/2023/10/TMC-Brochure_BC_2305.pdf (дата обращения: 07.10.2024).
- Innovative brine concentration using osmotically assisted reverse osmosis (OARO) process and advanced hollow fiber membrane. URL: http://worldwatersummit.in/presentation/2023/Day-1/Takahhito_nako.pdf (дата обращения: 15.10.2024).
- Ju J., Lee S., Kim Y., Cho H., Lee S. Theoretical and Experimental Analysis of Osmotically Assisted Reverse Osmosis for Minimum Liquid Discharge // Membranes. 2023. V. 13. P. 814.
- Пантелеев А.А., Пантелеев А.А., Рябчиков Б.Е., Сидоров А.Р., Смирнов В.Б. Высокоэффективные УОО с мембранными элементами рулонного типа // Новое в российской электроэнергетике. 2024. № 8. С. 15.
- Boyd М. Twenty-first century reverse osmosis disrupts traditional technology // World Water. 2019. V. 4. P. 26.
- Матусевич Л.Н. Кристаллизация из растворов в химической промышленности. М.: Химия, 1968. C. 304.
- Qian L., Guo-Rong X., Rasel D. Inorganic scaling in reverse osmosis (RO) desalination: Mechanisms, monitoring, and inhibition strategies // Desalination. 2019. V. 468. P. 114065.
- Elimelech M., Phillip W.A. The future of seawater desalination: energy, technology, and the environment // Science. 2011. V. 333. P. 712.
- Gal Z., Efraty A. CCD series no. 18: record low energy in closed-circuit desalination of ocean seawater with NanoH2O elements without ERD // Desalinаtion Water Treatment. 2015. V. 57. P. 9180.
- Jungbin K., Linyinxue D., Ho S., Kiho P. Current progress in semi-batch reverse osmosis for brackish water desalination // Desalination. 2024. V. 578 P. 117434.
- Liberman B. Three methods of forward osmosis cleaning for RO membranes // Desalination. 2018. V. 431. P. 22.
- Liberman B., Lior E., Greenberg G. Pulse Flow RO–The new RO technology for waste and brackish water applications // Desalination. 2020. V. 479. P. 114336.
- Смирнов А.А., Смирнов В.Б. Повышение эффективности двухступенчатых установок обратного осмоса // Новое в российской электроэнергетике. 2024. № 7. С. 24.
Supplementary files
