Neonatal sepsis and septic shock: towards the implementation of phenotyping into clinical practice
- Authors: Smolkina E.O.1, Lekmanov A.U.1
-
Affiliations:
- Pirogov Russian National Research Medical University
- Issue: Vol 15, No 1 (2025)
- Pages: 51-70
- Section: Reviews
- URL: https://journal-vniispk.ru/2219-4061/article/view/312983
- DOI: https://doi.org/10.17816/psaic1873
- ID: 312983
Cite item
Full Text
Abstract
Neonatal sepsis is a bloodstream infection occurring in newborns up to 28 days of age, classified as early-onset or late-onset depending on the timing of infection. It remains a leading cause of morbidity and mortality among neonates. The complex and poorly understood pathogenesis of neonatal sepsis complicates its diagnosis and treatment. The neonatal population itself is highly heterogeneous, differing significantly from any other age group. This results in variable clinical presentations and the lack of a unified knowledge base, despite ongoing efforts to establish international clinical guidelines. The problem is exacerbated by the absence of universal definitions and criteria for neonatal sepsis and septic shock, hindering data standardization at the global level. The heterogeneity of sepsis presents an additional challenge, driven by differences in gestational age, onset timing, and sources of infection. Phenotyping emerges as a promising approach, enabling the identification of subgroups of patients with shared pathophysiological characteristics, prognoses, and treatment responses. Sepsis phenotyping is widely studied in adults and pediatric populations, with an increasing number of publications on its clinical applications. However, in Russian scientific databases, data on phenotyping in pediatrics remain scarce, and studies focused on neonates are nearly absent. This underscores the urgent need for further research to enhance the diagnosis and treatment of neonatal sepsis.
Full Text
##article.viewOnOriginalSite##About the authors
Elina O. Smolkina
Pirogov Russian National Research Medical University
Email: elinasmlkn@gmail.com
ORCID iD: 0009-0004-1714-7129
Russian Federation, Moscow
Andrei U. Lekmanov
Pirogov Russian National Research Medical University
Author for correspondence.
Email: aulek@rambler.ru
ORCID iD: 0000-0003-0798-1625
SPIN-code: 3630-5061
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowReferences
- Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287 EDN: EVYMIC
- Singh M, Alsaleem M, Gray CP. Neonatal Sepsis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; September 29, 2022.
- Aneja RK, Varughese-Aneja R, Vetterly CG, Carcillo JA. Antibiotic therapy in neonatal and pediatric septic shock. Curr Infect Dis Rep. 2011;13(5):433–441. doi: 10.1007/s11908-011-0197-5 EDN: FXSUXV
- Molloy EJ, Wynn JL, Bliss J, et al. Neonatal sepsis: need for consensus definition, collaboration and core outcomes. Pediatr Res. 2020;88(1):2–4. doi: 10.1038/s41390-020-0850-5 EDN: JRYVFT
- Liu AC, Zhao J, Lin J, et al. Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Brief Bioinform. 2020;21(4):1182–1195. doi: 10.1093/bib/bbz059
- Zhao H, Kennedy JN, Wang S, et al. Revising host phenotypes of sepsis using microbiology. Front Med. 2021;8:775511. doi: 10.3389/fmed.2021.775511 EDN: ZRNYSL
- Li H, Markal A, Balch JA, et al. Methods for phenotyping adult patients in sepsis and septic shock: a scoping review. Crit Care Explor. 2022;4(4):e0672. doi: 10.1097/CCE.0000000000000672 EDN: CRDSMF
- Atreya MR, Wong HR. Precision medicine in pediatric sepsis. Curr Opin Pediatr. 2019;31(3):322–327. doi: 10.1097/MOP.0000000000000753
- Sankar J, Agarwal S, Goyal A, Kabra SK, Lodha R. Pediatric sepsis phenotypes and outcome: 5-year retrospective cohort study in a single center in India (2017–2022). Pediatr Crit Care Med. 2024;25(4):e186–e192. doi: 10.1097/PCC.0000000000003449 EDN: DUHCFN
- Papathanakos G, Andrianopoulos I, Xenikakis M, et al. Clinical sepsis phenotypes in critically ill patients. Microorganisms. 2023;11(9):2165. doi: 10.3390/microorganisms11092165 EDN: QOUZNU
- Ng S, Strunk T, Jiang P, et al. Precision medicine for neonatal sepsis. Front Mol Biosci. 2018;5:70. doi: 10.3389/fmolb.2018.00070
- Bhavani SV, Coopersmith CM, Ziegler EJ, et al. Identifying novel sepsis subphenotypes using temperature trajectories. Am J Respir Crit Care Med. 2019;200(3):327–335. doi: 10.1164/rccm.201806-1197OC
- Zhu JL, Tang WM, Li YX, et al. Influence of systolic blood pressure trajectory on in-hospital mortality in patients with sepsis. BMC Infect Dis. 2023;23(1):90. doi: 10.1186/s12879-023-08054-w EDN: DWOUUU
- Liu B, Zhou Q, Chen Y, et al. Clinical phenotypes of sepsis: a narrative review. J Thorac Dis. 2024;16(7):4772–4779. doi: 10.21037/jtd-24-114 EDN: BUDQYD
- WHO. Global report on the epidemiology and burden of sepsis: current evidence, identifying gaps and future directions. Geneva, Switzerland: World Health Organization; 2020.
- Liu J, Wang HF, Zhang LM, et al. Predictive value of laboratory indicators for in-hospital death in children with community-onset sepsis: a prospective observational study of 266 patients. BMJ Paediatr Open. 2024;8(1):e002329. doi: 10.1136/bmjpo-2023-002329 EDN: JJAUCO
- Kermorvant-Duchemin E, Laborie S, Rabilloud M, et al. Outcome and prognostic factors in neonates with septic shock. Pediatr Crit Care Med. 2008;9(2):186–191. doi: 10.1097/PCC.0b013e31816689a8
- Weiss SL, Fitzgerald JC, Pappachan J, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–1157. doi: 10.1164/rccm.201412-2323OC
- Hon KL, Leung KKY, Oberender F, et al. Paediatrics: how to manage septic shock. Drugs Context. 2021;10:2021-1-5. doi: 10.7573/dic.2021-1-5
- Geleta D, Abebe E, Negash S, et al. Phenotypic bacterial epidemiology and antimicrobial resistance profiles in neonatal sepsis at Jimma Medical Center, Ethiopia: insights from a prospective study. PLoS One. 2024;19(9):e0310376. doi: 10.1371/journal.pone.0310376 EDN: OZHBQE
- Russo C, Peluso L, Silvestri L, et al. The etiology of bloodstream infections at an Italian pediatric tertiary care hospital: a 17-year-long series. Pathogens. 2024;13(8):675. doi: 10.3390/pathogens13080675 EDN: GBGRAB
- Spaggiari V, Passini E, Crestani S, et al. Neonatal septic shock, a focus on first line interventions. Acta Biomed. 2022;93(3):e2022141. doi: 10.23750/abm.v93i3.12577
- Wynn JL, Wong HR. Pathophysiology and treatment of septic shock in neonates. Clin Perinatol. 2010;37(2):439–479. doi: 10.1016/j.clp.2010.04.002
- Conti MG, Angelidou A, Diray-Arce J, et al. Immunometabolic approaches to prevent, detect, and treat neonatal sepsis. Pediatr Res. 2020;87(2):399–405. doi: 10.1038/s41390-019-0647-6 EDN: GHTEDR
- Dolin HH, Papadimos TJ, Chen X, Pan ZK. Characterization of pathogenic sepsis etiologies and patient profiles: a novel approach to triage and treatment. Microbiol Insights. 2019;12:1178636118825081. doi: 10.1177/1178636118825081
- Georges Pius KM, Aurore Albane E, Marie-Paul B, et al. Neonatal sepsis: highlights and controversies. J Pediatr Neonatal. 2022;4(1):1–5.
- Bikhet M, Morsi M, Hara H, et al. The immune system in infants: relevance to xenotransplantation. Pediatr Transplant. 2020;24(7):e13795. doi: 10.1111/petr.13795 EDN: AKENRC
- Puchwein-Schwepcke A, Artmann S, Rajwich L, et al. Effect of gestational age and postnatal age on the endothelial glycocalyx in neonates. Sci Rep. 2021;11(1):3133. doi: 10.1038/s41598-021-81847-8 EDN: EFBGUC
- Wheeler DS, Wong HR, Zingarelli B. Pediatric sepsis — part I: “Children are not small adults!”. Open Inflamm J. 2011;4:4–15. doi: 10.2174/1875041901104010004
- Rawat S, Neeraj K, Preeti K, Prashant M. A review on type, etiological factors, definition, clinical features, diagnosis, management and prevention of neonatal sepsis. J Sci Innov Res. 2013;2(4):802–813.
- Odabasi IO, Bulbul A. Neonatal sepsis. Sisli Etfal Hastan Tip Bul. 2020;54(2):142–158. doi: 10.14744/SEMB.2020.00236 EDN: UHHVRQ
- Wynn JL, Wong HR. Pathophysiology of neonatal sepsis. Fetal Neonatal Physiol. 2017:1536–1552.e10. doi: 10.1016/B978-0-323-35214-7.00152-9
- Gorecki G, Cochior D, Moldovan C, Rusu E. Molecular mechanisms in septic shock (review). Exp Ther Med. 2021;22:1161. doi: 10.3892/etm.2021.10595 EDN: BUGRJS
- Anggraini D, Hasni D, Amelia R. Pathogenesis of sepsis. Sci J. 2022;1(4):332–339. doi: 10.56260/sciena.v1i4.63 EDN: SGZSDX
- Cornell TT, Wynn J, Shanley TP. Mechanisms and regulation of the gene-expression response to sepsis. Pediatrics. 2010;125(6):1248–1258. doi: 10.1542/peds.2009-3274 EDN: MYDEWJ
- Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. J Immunol Res. 2012:985646. doi: 10.1155/2012/985646
- van den Berg JP, Westerbeek EA, van der Klis FR, Berbers GA, van Elburg RM. Transplacental transport of IgG antibodies to preterm infants: a review of the literature. Early Hum Dev. 2011;87(2):67–72. doi: 10.1016/j.earlhumdev.2010.11.003
- Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin. 2013;60(2):367–389. doi: 10.1016/j.pcl.2012.12.003
- Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ. 2007;335(7625):879–883. doi: 10.1136/bmj.39346.495880.AE
- Keskey R, Cone JT, DeFazio JR, Alverdy JC. The use of fecal microbiota transplant in sepsis. Transl Res. 2020;226:12–25. doi: 10.1016/j.trsl.2020.07.002 EDN: ENXZOX
- Belderbos ME, Levy O, Stalpers F, et al. Neonatal plasma polarizes TLR4-mediated cytokine responses towards low IL-12p70 and high IL-10 production via distinct factors. PLoS One. 2012;7:e33419. doi: 10.1371/journal.pone.0033419
- Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007;7:379–390. doi: 10.1038/nri2075
- Guilmot A, Hermann E, Braud VM, et al. Natural killer cell responses to infections in early life. J Innate Immun. 2011;3(3):280–288. doi: 10.1159/000323934
- Tsafaras GP, Ntontsi P, Xanthou G. Advantages and limitations of the neonatal immune system. Front Pediatr. 2020;8:5. doi: 10.3389/fped.2020.00005 EDN: PAHBFM
- Iba T, Umemura Y, Wada H, Levy JH. Roles of coagulation abnormalities and microthrombosis in sepsis: pathophysiology, diagnosis, and treatment. Arch Med Res. 2021;52(8):788–797. doi: 10.1016/j.arcmed.2021.07.003 EDN: YSOTBZ
- Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock — basics of diagnosis, pathophysiology and clinical decision making. Med Clin. 2020;104(4):573–585. doi: 10.1016/j.mcna.2020.02.011 EDN: SCDQAK
- Ilina YYu, Fot EV, Kuzkov VV, Kirov MYu. Sepsis-induced damage to endothelial glycocalyx (literature review). Annals of Critical Care. 2019;(2):32–39. doi: 10.21320/1818-474X-2019-2-32-39 EDN: ZEURRJ
- Aneja RK, Carcillo JA. Differences between adult and pediatric septic shock. Minerva Anestesiol. 2011;77(10):986–992. EDN: PMIKSV
- Kryuchko DS, Karpova AL, Prutkin ME, et al. Сollapse of newborns. Neonatology: News, Opinions, Training. 2013;2(2):67–79. EDN: RXQVHP
- Nyenga AM, Mukuku O, Wembonyama SO. Neonatal sepsis: a review of the literature. Theory Clin Pract Pediatr. 2021;3(1):94–101. doi: 10.25082/TCPP.2021.01.006 EDN: IUXDLA
- Gomanova LI, Fokina MA. Topical issues of clinical symptoms and diagnostics of septic shock. Russian Journal of Infection and Immunity. 2022;12(2):239–252. doi: 10.15789/2220-7619-TIO-1811 EDN: VFMEPD
- Lekmanov AU, Mironov PI. Pediatric sepsis — time to reach agreement. Russian Bulletin of Perinatology and Pediatrics. 2020;65(3):131–137. doi: 10.21508/1027-4065-2020-65-3-131-137 EDN: XVXJFX
- Parra-Llorca A, Pinilla-Gonzalez A, Torrejon-Rodriguez L, et al. Effects of sepsis on immune response, microbiome and oxidative metabolism in preterm infants. Children (Basel). 2023;10(3):602. doi: 10.3390/children10030602 EDN: TMXYVQ
- Moyo GPK, Sobguemezing D, Adjifack HT. Neonatal emergencies in full-term infants: a seasonal description in a pediatric referral hospital of Yaoundé, Cameroon. Asian J Psychiatry. 2020;6(2):87–90.
- Griffin MP, Lake DE, O’Shea TM, Moorman JR. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr Res. 2007;61(2):222–227. doi: 10.1203/01.pdr.0000252438.65759.af
- Kale A, Jay Bhaye D, Bonde V. Neonatal sepsis: an update. Iran J Neonatol. 2014;4(4):39–51. doi: 10.22038/IJN.2013.2012
- Mannan MA, Jahan MA, Hossain MA, et al. Septic shock in neonate: clinical profile and its outcome. J Pediatr Perinatol Child Health. 2022;6:177–187. doi: 10.26502/jppch.74050100 EDN: XPGOLY
- Goldstein B, Giroir B, Randolph A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8. doi: 10.1097/01.PCC.0000149131.72248.E6
- Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children. JAMA Pediatr. 2017;171(10):e172352. doi: 10.1001/jamapediatrics.2017.2352
- Wynn JL, Polin RA. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr Res. 2020;88(1):85–90. doi: 10.1038/s41390-019-0517-2
- Sankar J, Dhochak N, Kumar K, et al. Comparison of international pediatric sepsis consensus conference versus sepsis-3 definitions for children presenting with septic shock to a tertiary care center in India: a retrospective study. Pediatr Crit Care Med. 2019;20(3):e122–e129. doi: 10.1097/PCC.0000000000001864
- Schlapbach LJ, Watson RS, Sorce LR, et al. International consensus criteria for pediatric sepsis and septic shock. JAMA. 2024;331(8):665–674. doi: 10.1001/jama.2024.0179 EDN: CAKGAW
- Sanchez-Pinto LN, Bennett TD, DeWitt PE, et al. Development and validation of the Phoenix criteria for pediatric sepsis and septic shock. JAMA. 2024;331(8):675–686. doi: 10.1001/jama.2024.0196 EDN: BNNNPD
- Leteurtre S, Duhamel A, Salleron J, et al. PELOD-2: an update of the Pediatric logistic organ dysfunction score. Crit Care Med. 2013;41(7):1761–1773. doi: 10.1097/CCM.0b013e31828a2bbd
- Mironov PI, Aleksandrovich YS, Trembach AV, et al. Comparative assessment of the predictive ability of organ dysfunction scales PSOFA, PELOD 2 and phoenix sepsis score in pediatric sepsis: retrospective observational study. Annals of Critical Care. 2024;(3):152–160. doi: 10.21320/1818-474X-2024-3-152-160 EDN: DEQGHQ
- Mironov PI, Lekmanov AU. Evaluation of the validity of the nSOFA score in newborns with sepsis. Messenger of Anesthesiology and Resuscitation. 2021;18(2):56–61. doi: 10.21292/2078-5658-2021-18-2-56-61
- Berka I, Korček P, Janota J, et al. Neonatal sequential organ failure assessment (nSOFA) score within 72 hours after birth reliably predicts mortality and serious morbidity in very preterm infants. Diagnostics (Basel). 2022;12(6):1342. doi: 10.3390/diagnostics12061342 EDN: XPUYNK
- Farkas JD. The complete blood count to diagnose septic shock. J Thorac Dis. 2020;12(Suppl 1):S16–S21. doi: 10.21037/jtd.2019.12.63
- Laishram RS, Khuraijam RD. Hematological and biological markers of neonatal sepsis. Iran J Pathol. 2013;8:137–146.
- Gandhi P, Kondekar S. A review of the different haematological parameters and biomarkers used for diagnosis of neonatal sepsis. EMJ Hematol. 2019;7(1):85–92. doi: 10.33590/emjhematol/10313792
- Celik IH, Hanna M, Canpolat FE, et al. Diagnosis of neonatal sepsis: the past, present and future. Pediatr Res. 2022;91(2):337–350. doi: 10.1038/s41390-021-01696-z EDN: YOEAKN
- Golding CN, Schaltz-Buchholzer F, Sanca L, et al. Feasibility of manual white blood cell counts as a predictor of neonatal sepsis in a low-resource setting. Trans R Soc Trop Med Hyg. 2020;114(8):566–574. doi: 10.1093/trstmh/traa023 EDN: BUPTXP
- Schmutz N, Henry E, Jopling J, et al. Expected ranges for blood neutrophil concentrations of neonates: the Manroe and Mouzinho charts revisited. J Perinatol. 2008;28(4):275–281. doi: 10.1038/sj.jp.7211916
- Hornik CP, Benjamin DK, Becker KC, et al. Use of the complete blood cell count in early-onset neonatal sepsis. Pediatr Infect Dis J. 2012;31(8):799–802. doi: 10.1097/INF.0b013e318256905c
- Sumitro KR, Utomo MT, Widodo ADW. Neutrophil-to-lymphocyte ratio as an alternative marker of neonatal sepsis in developing countries. Oman Med J. 2021;36(1):e214. doi: 10.5001/omj.2021.05 EDN: XLHCSW
- Zhang S, Luan X, Zhang W, Jin Z. Platelet-to-lymphocyte and neutrophil-to-lymphocyte ratio as predictive biomarkers for early-onset neonatal sepsis. J Coll Physicians Surg Pak. 2021;31(7):821–824. doi: 10.29271/jpcsp.2021.07.821 EDN: ZGMDMO
- Hamiel U, Bahat H, Kozer E, et al. Diagnostic markers of acute infections in infants aged 1 week to 3 months: a retrospective cohort study. BMJ Open. 2018;8(1):e018092. doi: 10.1136/bmjopen-2017-018092
- Omran A, Maaroof A, Mohammad MHS, Abdelwahab A. Salivary C-reactive protein, mean platelet volume and neutrophil-lymphocyte ratio as diagnostic markers for neonatal sepsis. J Pediatr (Rio J). 2018;94(1):82–87. doi: 10.1016/j.jped.2017.03.006
- Can E, Hamilcikan Ş, Can C. The value of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio for detecting early-onset neonatal sepsis. J Pediatr Hematol Oncol. 2018;40(4):e229–e232. doi: 10.1097/MPH.0000000000001059
- Ljungström L, Pernestig AK, Jacobsson G, et al. Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte count ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis. PLoS One. 2017;12(7):e0181704. doi: 10.1371/journal.pone.0181704
- Perrone S, Lotti F, Longini M, et al. C-reactive protein in healthy term newborns during the first 48 hours of life. Arch Dis Child Fetal Neonatal Ed. 2018;103(2):F163–F166. doi: 10.1136/archdischild-2016-312506 EDN: YEGTNZ
- Boscarino G, Migliorino R, Carbone G, et al. Biomarkers of neonatal sepsis: where we are and where we are going. Antibiotics (Basel). 2023;12(8):1233. doi: 10.3390/antibiotics12081233 EDN: ZESARC
- Sharma D, Farahbakhsh N, Shastri S, Sharma P. Biomarkers for diagnosis of neonatal sepsis: a literature review. J Matern Fetal Neonatal Med. 2018;31(12):1646–1659. doi: 10.1080/14767058.2017.1322060 EDN: YGJKPB
- Pizzolato E, Ulla M, Galluzzo C, et al. Role of presepsin for the evaluation of sepsis in the emergency department. Clin Chem Lab Med. 2014;52(10):1395–1400. doi: 10.1515/cclm-2014-0199
- Abdel Motalib T. Soluble CD14-subtype [presepsin] and hepcidin as diagnostic and prognostic markers in early onset neonatal sepsis. Egypt J Med Microbiol. 2015;24(3):45–52.
- Rayan J. Presepsin as an early reliable diagnostic and prognostic marker of neonatal sepsis. Int J Adv Res. 2016;4(6):1538–1549. doi: 10.21474/IJAR01/1043
- Standage SW, Wong HR. Biomarkers for pediatric sepsis and septic shock. Expert Rev Anti Infect Ther. 2011;9(1):71–79. doi: 10.1586/eri.10.154
- Abd Elkareem RM, Ahmed HM, Meabed MH, et al. Diagnostic value of CD64 in early detection of neonatal sepsis. Comp Clin Pathol. 2020;29(3):639–643. doi: 10.1007/s00580-020-03100-4 EDN: NZDYNM
- Saifullin RF, Sinyavkin DO. Laboratory biomarkers of sepsis. Epidemiol Infect Dis. 2019;24(3):146–151. doi: 10.18821/1560-9529-2019-24-3-146-151 EDN: VSZTTS
- Biron BM, Ayala A, Lomas-Neira JL. Biomarkers for sepsis: what is and what might be? Biomark Insights. 2015;10(Suppl 4):7–17. doi: 10.4137/BMI.S29519
- Suetrong B, Walley KR. Lactic acidosis in sepsis: it’s not all anaerobic: implications for diagnosis and management. Chest. 2016;149(1):252–261. doi: 10.1378/chest.15-1703
- Paul R. Recognition, diagnostics, and management of pediatric severe sepsis and septic shock in the emergency department. Pediatr Clin North Am. 2018;65(6):1107–1118. doi: 10.1016/j.pcl.2018.07.012
- Scott HF, Donoghue AJ, Gaieski DF, et al. The utility of early lactate testing in undifferentiated pediatric systemic inflammatory response syndrome. Acad Emerg Med. 2012;19(11):1276–1280. doi: 10.1111/acem.12014
- Zhang J, Yan W, Dong Y, et al. Early identification and diagnosis, pathophysiology, and treatment of sepsis-related acute lung injury: a narrative review. J Thorac Dis. 2024;16(8):5457–5476. doi: 10.21037/jtd-24-1191 EDN: GVUMFH
- Flynn A, Chokkalingam Mani B, Mather PJ. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev. 2010;15(6):605–611. doi: 10.1007/s10741-010-9176-4 EDN: SWWEAW
- Kim JS, Kim M, Kim YJ, et al. Troponin testing for assessing sepsis-induced myocardial dysfunction in patients with septic shock. J Clin Med. 2019;8(2):239. doi: 10.3390/jcm8020239
- Ambriz-Alarcón MA, Arroyo-Espinosa DI, Meugniot-García H, et al. Acute myocardial injury assessed by high-sensitivity cardiac troponin I levels in adult patients with early sepsis at a tertiary referral center in Mexico: an exploratory study. J Cardiovasc Dev Dis. 2024;11(1):28. doi: 10.3390/jcdd11010028 EDN: NLMSML
- Wong HR, Caldwell JT, Cvijanovich NZ, et al. Prospective clinical testing and experimental validation of the pediatric sepsis biomarker risk model. Sci Transl Med. 2019;11(518):eaax9000. doi: 10.1126/scitranslmed.aax9000
- Wong HR, Cvijanovich NZ, Anas N, et al. Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers: PERSEVERE-XP. Am J Respir Crit Care Med. 2017;196(4):494–501. doi: 10.1164/rccm.201701-0066OC EDN: YGVSIT
- Pritulo LF, Akmollaev SD. Modern understanding of the diagnosis of sepsis in children. Tavricheskiy Mediko-Biologicheskiy Vestnik. 2023;26(2):92–100. (In Russ.) doi: 10.29039/2070-8092-2023-26-2-92-100 EDN: BNDEPS
- Raymond SL, Stortz JA, Mira JC, et al. Immunological defects in neonatal sepsis and potential therapeutic approaches. Front Pediatr. 2017;5:14. doi: 10.3389/fped.2017.00014
- Miller JM, Binnicker MJ, Campbell S, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):813–816. doi: 10.1093/cid/ciy584
- Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–e106. doi: 10.1097/PCC.0000000000002198 EDN: ZTJXTH
- Fathi EM, Narchi H, Chedid F. Noninvasive hemodynamic monitoring of septic shock in children. World J Methodol. 2018;8(1):1–8. doi: 10.5662/wjm.v8.i1.1
- Davis AL, Carcillo JA, Aneja RK, et al. American college of critical care medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45(6):1061–1093. doi: 10.1097/CCM.0000000000002425
- Wong HR. Personalized medicine, endotypes, and intensive care medicine. Intensive Care Med. 2015;41(6):1138–1140. doi: 10.1007/s00134-015-3812-3 EDN: JYJQNL
- Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003–2017. doi: 10.1001/jama.2019.5791
- Davenport EE, Burnham KL, Radhakrishnan J, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016;4(4):259–271. doi: 10.1016/S2213-2600(16)00046-1
- Scicluna BP, Van Vught LA, Zwinderman AH, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;5(10):816–826. doi: 10.1016/S2213-2600(17)30294-1
- Wong HR, Cvijanovich N, Lin R, et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med. 2009;7:34. doi: 10.1186/1741-7015-7-34
- Wong HR, Cvijanovich NZ, Anas N, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med. 2015;191(3):309–315. doi: 10.1164/rccm.201410-1864OC
- Carcillo JA, Halstead ES, Hall MW, et al. Three hypothetical inflammation pathobiology phenotypes and pediatric sepsis-induced multiple organ failure outcome. Pediatr Crit Care Med. 2017;18(6):513–523. doi: 10.1097/PCC.0000000000001122 EDN: YGTYUX
- Sweeney TE, Azad TD, Donato M, et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med. 2018;46(6):915–925. doi: 10.1097/CCM.0000000000003084
- Sanchez-Pinto LN, Stroup EK, Pendergrast T, et al. Derivation and validation of novel phenotypes of multiple organ dysfunction syndrome in critically ill children. JAMA Netw Open. 2020;3(8):e209271. doi: 10.1001/jamanetworkopen.2020.9271 EDN: HPNTOG
- Koutroulis I, Velez T, Wang T, et al. Pediatric sepsis phenotypes for enhanced therapeutics: An application of clustering to electronic health records. J Am Coll Emerg Physicians Open. 2022;3(1):e12660. doi: 10.1002/emp2.12660 EDN: SGHOTI
- Qin Y, Kernan KF, Fan Z, et al. Machine learning derivation of four computable 24-h pediatric sepsis phenotypes to facilitate enrollment in early personalized anti-inflammatory clinical trials. Crit Care. 2022;26(1):128. doi: 10.1186/s13054-022-03977-3 EDN: VMXVVR
- Atreya MR, Huang M, Moore AR, et al. Identification and transcriptomic assessment of latent profile pediatric septic shock phenotypes. Crit Care. 2024;28(1):246. doi: 10.1186/s13054-024-05020-z EDN: QFOVPM
- Schwarz CE, Dempsey EM. Management of neonatal hypotension and shock. Semin Fetal Neonatal Med. 2020;25(5):101121. doi: 10.1016/j.siny.2020.101121 EDN: PCFBJB
- Wen L, Xu L. The efficacy of dopamine versus epinephrine for pediatric or neonatal septic shock: a meta-analysis of randomized controlled studies. Ital J Pediatr. 2020;46(1):6. doi: 10.1186/s13052-019-0768-x EDN: KIARZW
- Miranda M, Nadel S. Pediatric sepsis: a summary of current definitions and management recommendations. Curr Pediatr Rep. 2023;11(2):29–39. doi: 10.1007/s40124-023-00286-3 EDN: BELRPM
- Lee EP, Wu HP, Chan OW, et al. Hemodynamic monitoring and management of pediatric septic shock. Biomed J. 2022;45(1):63–73. doi: 10.1016/j.bj.2021.10.004 EDN: OUMXQJ
- Dilli D, Soylu H, Tekin N. Neonatal hemodynamics and management of hypotension in newborns. Turk Arch Pediatr. 2018;53(Suppl 1):S65–S75. doi: 10.5152/TurkPediatriArs.2018.01801
- Altit G, Vigny-Pau M, Barrington K, et al. Corticosteroid therapy in neonatal septic shock-do we prevent death? Am J Perinatol. 2018;35(2):146–151. doi: 10.1055/s-0037-1606188
- Alkhalaf HA, Alhamied NA, Alqahtani AM, et al. The association of corticosteroid therapy with mortality and length of stay among children with septic shock: a retrospective cohort study. Cureus. 2023;15(1):e33267. doi: 10.7759/cureus.33267 EDN: RDQCKZ
- Wong HR, Sweeney TE, Lindsell CJ. Simplification of a septic shock endotyping strategy for clinical application. Am J Respir Crit Care Med. 2017;195(2):263–265. doi: 10.1164/rccm.201607-1535LE
- Solé A, Jordan I, Bobillo S, et al. Venoarterial extracorporeal membrane oxygenation support for neonatal and pediatric refractory septic shock: more than 15 years of learning. Eur J Pediatr. 2018;177(8):1191–1200. doi: 10.1007/s00431-018-3174-2 EDN: YPCREM
- Galletta F, Cucinotta U, Gambadauro A, et al. Recent recommendations of neonatal septic shock: a review. J Biol Regul Homeost Agents. 2022;36(1(S1)):107–115. doi: 10.23812/j.biol.regul.homeost.agents.202236.1S1.17 EDN: EJKHZP
- Cruz AT, Lane RD, Balamuth F, et al. Updates on pediatric sepsis. J Am Coll Emerg Physicians Open. 2020;1(5):981–993. doi: 10.1002/emp2.12173 EDN: AGTQEY
- Silveira RC, Giacomini C, Procianoy RS. Neonatal sepsis and septic shock: concepts update and review. Rev Bras Ter Intensiva. 2010;22(3):280–290. doi: 10.1590/S0103-507X2010000300011
- Yu ZH, Tian GX, Wang YD, et al. The effect of GM-CSF and predictors of treatment outcome in pediatric septic shock patients. Ital J Pediatr. 2024. doi: 10.1186/s13052-025-01863-6.
- Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–532. doi: 10.1007/s00134-010-2088-x EDN: LKXKBV
- Sevketoglu E, Yildizdas D, Horoz OO, et al. Use of therapeutic plasma exchange in children with thrombocytopenia-associated multiple organ failure in the Turkish thrombocytopenia-associated multiple organ failure network. Pediatr Crit Care Med. 2014;15(8):e354–e359. doi: 10.1097/PCC.0000000000000227 EDN: UVZCEH
- Nguyen TC, Han YY, Kiss JE, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36(10):2878–2887. doi: 10.1097/ccm.0b013e318186aa49 EDN: MEGHWD
- Agnche Z, Yenus Yeshita H, Abdela Gonete K. Neonatal sepsis and its associated factors among neonates admitted to neonatal intensive care units in primary hospitals in central Gondar zone, northwest Ethiopia, 2019. Infect Drug Resist. 2020;13:3957–3967. doi: 10.2147/IDR.S276678 EDN: NIVZFM
- Niyoyita JC, Ndayisenga J, Omolo J, et al. Factors associated with neonatal sepsis among neonates admitted in Kibungo Referral Hospital, Rwanda. Sci Rep. 2024;14(1):15961. doi: 10.1038/s41598-024-66818-z EDN: CXDPIQ
- Saini SS, Shrivastav AK, Kumar J, et al. Predictors of mortality in neonatal shock: a retrospective cohort study. Shock. 2022;57(2):199–204. doi: 10.1097/SHK.0000000000001887 EDN: QTPZKD
- Jatsho J, Nishizawa Y, Pelzom D, Sharma R. Clinical and bacteriological profile of neonatal sepsis: a prospective hospital-based study. Int J Pediatr. 2020;2020:1835945. doi: 10.1155/2020/1835945 EDN: MUKKOP
- Wong HR, Cvijanovich NZ, Anas N, et al. Pediatric sepsis biomarker risk model-II: Redefining the pediatric sepsis biomarker risk model with septic shock phenotype. Crit Care Med. 2016;44(11):2010–2017. doi: 10.1097/CCM.0000000000001852
- Stoll B, Hansen N, Adams-Chapman I, et al. Neurodevelopment and growth impairment among extremely low birth-weight infants with neonatal infections. JAMA. 2004;292(19):2357–2650. doi: 10.1001/jama.292.19.2357
- Raturi A, Chandran S. Neonatal sepsis: Aetiology, pathophysiology, diagnostic advances and management strategies. Clin Med Insights Pediatr. 2024;18:11795565241281337. doi: 10.1177/11795565241281337 EDN: MFISJO
Supplementary files
