Neonatal sepsis and septic shock: towards the implementation of phenotyping into clinical practice

Cover Page

Cite item

Full Text

Abstract

Neonatal sepsis is a bloodstream infection occurring in newborns up to 28 days of age, classified as early-onset or late-onset depending on the timing of infection. It remains a leading cause of morbidity and mortality among neonates. The complex and poorly understood pathogenesis of neonatal sepsis complicates its diagnosis and treatment. The neonatal population itself is highly heterogeneous, differing significantly from any other age group. This results in variable clinical presentations and the lack of a unified knowledge base, despite ongoing efforts to establish international clinical guidelines. The problem is exacerbated by the absence of universal definitions and criteria for neonatal sepsis and septic shock, hindering data standardization at the global level. The heterogeneity of sepsis presents an additional challenge, driven by differences in gestational age, onset timing, and sources of infection. Phenotyping emerges as a promising approach, enabling the identification of subgroups of patients with shared pathophysiological characteristics, prognoses, and treatment responses. Sepsis phenotyping is widely studied in adults and pediatric populations, with an increasing number of publications on its clinical applications. However, in Russian scientific databases, data on phenotyping in pediatrics remain scarce, and studies focused on neonates are nearly absent. This underscores the urgent need for further research to enhance the diagnosis and treatment of neonatal sepsis.

About the authors

Elina O. Smolkina

Pirogov Russian National Research Medical University

Email: elinasmlkn@gmail.com
ORCID iD: 0009-0004-1714-7129
Russian Federation, Moscow

Andrei U. Lekmanov

Pirogov Russian National Research Medical University

Author for correspondence.
Email: aulek@rambler.ru
ORCID iD: 0000-0003-0798-1625
SPIN-code: 3630-5061

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287 EDN: EVYMIC
  2. Singh M, Alsaleem M, Gray CP. Neonatal Sepsis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; September 29, 2022.
  3. Aneja RK, Varughese-Aneja R, Vetterly CG, Carcillo JA. Antibiotic therapy in neonatal and pediatric septic shock. Curr Infect Dis Rep. 2011;13(5):433–441. doi: 10.1007/s11908-011-0197-5 EDN: FXSUXV
  4. Molloy EJ, Wynn JL, Bliss J, et al. Neonatal sepsis: need for consensus definition, collaboration and core outcomes. Pediatr Res. 2020;88(1):2–4. doi: 10.1038/s41390-020-0850-5 EDN: JRYVFT
  5. Liu AC, Zhao J, Lin J, et al. Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Brief Bioinform. 2020;21(4):1182–1195. doi: 10.1093/bib/bbz059
  6. Zhao H, Kennedy JN, Wang S, et al. Revising host phenotypes of sepsis using microbiology. Front Med. 2021;8:775511. doi: 10.3389/fmed.2021.775511 EDN: ZRNYSL
  7. Li H, Markal A, Balch JA, et al. Methods for phenotyping adult patients in sepsis and septic shock: a scoping review. Crit Care Explor. 2022;4(4):e0672. doi: 10.1097/CCE.0000000000000672 EDN: CRDSMF
  8. Atreya MR, Wong HR. Precision medicine in pediatric sepsis. Curr Opin Pediatr. 2019;31(3):322–327. doi: 10.1097/MOP.0000000000000753
  9. Sankar J, Agarwal S, Goyal A, Kabra SK, Lodha R. Pediatric sepsis phenotypes and outcome: 5-year retrospective cohort study in a single center in India (2017–2022). Pediatr Crit Care Med. 2024;25(4):e186–e192. doi: 10.1097/PCC.0000000000003449 EDN: DUHCFN
  10. Papathanakos G, Andrianopoulos I, Xenikakis M, et al. Clinical sepsis phenotypes in critically ill patients. Microorganisms. 2023;11(9):2165. doi: 10.3390/microorganisms11092165 EDN: QOUZNU
  11. Ng S, Strunk T, Jiang P, et al. Precision medicine for neonatal sepsis. Front Mol Biosci. 2018;5:70. doi: 10.3389/fmolb.2018.00070
  12. Bhavani SV, Coopersmith CM, Ziegler EJ, et al. Identifying novel sepsis subphenotypes using temperature trajectories. Am J Respir Crit Care Med. 2019;200(3):327–335. doi: 10.1164/rccm.201806-1197OC
  13. Zhu JL, Tang WM, Li YX, et al. Influence of systolic blood pressure trajectory on in-hospital mortality in patients with sepsis. BMC Infect Dis. 2023;23(1):90. doi: 10.1186/s12879-023-08054-w EDN: DWOUUU
  14. Liu B, Zhou Q, Chen Y, et al. Clinical phenotypes of sepsis: a narrative review. J Thorac Dis. 2024;16(7):4772–4779. doi: 10.21037/jtd-24-114 EDN: BUDQYD
  15. WHO. Global report on the epidemiology and burden of sepsis: current evidence, identifying gaps and future directions. Geneva, Switzerland: World Health Organization; 2020.
  16. Liu J, Wang HF, Zhang LM, et al. Predictive value of laboratory indicators for in-hospital death in children with community-onset sepsis: a prospective observational study of 266 patients. BMJ Paediatr Open. 2024;8(1):e002329. doi: 10.1136/bmjpo-2023-002329 EDN: JJAUCO
  17. Kermorvant-Duchemin E, Laborie S, Rabilloud M, et al. Outcome and prognostic factors in neonates with septic shock. Pediatr Crit Care Med. 2008;9(2):186–191. doi: 10.1097/PCC.0b013e31816689a8
  18. Weiss SL, Fitzgerald JC, Pappachan J, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–1157. doi: 10.1164/rccm.201412-2323OC
  19. Hon KL, Leung KKY, Oberender F, et al. Paediatrics: how to manage septic shock. Drugs Context. 2021;10:2021-1-5. doi: 10.7573/dic.2021-1-5
  20. Geleta D, Abebe E, Negash S, et al. Phenotypic bacterial epidemiology and antimicrobial resistance profiles in neonatal sepsis at Jimma Medical Center, Ethiopia: insights from a prospective study. PLoS One. 2024;19(9):e0310376. doi: 10.1371/journal.pone.0310376 EDN: OZHBQE
  21. Russo C, Peluso L, Silvestri L, et al. The etiology of bloodstream infections at an Italian pediatric tertiary care hospital: a 17-year-long series. Pathogens. 2024;13(8):675. doi: 10.3390/pathogens13080675 EDN: GBGRAB
  22. Spaggiari V, Passini E, Crestani S, et al. Neonatal septic shock, a focus on first line interventions. Acta Biomed. 2022;93(3):e2022141. doi: 10.23750/abm.v93i3.12577
  23. Wynn JL, Wong HR. Pathophysiology and treatment of septic shock in neonates. Clin Perinatol. 2010;37(2):439–479. doi: 10.1016/j.clp.2010.04.002
  24. Conti MG, Angelidou A, Diray-Arce J, et al. Immunometabolic approaches to prevent, detect, and treat neonatal sepsis. Pediatr Res. 2020;87(2):399–405. doi: 10.1038/s41390-019-0647-6 EDN: GHTEDR
  25. Dolin HH, Papadimos TJ, Chen X, Pan ZK. Characterization of pathogenic sepsis etiologies and patient profiles: a novel approach to triage and treatment. Microbiol Insights. 2019;12:1178636118825081. doi: 10.1177/1178636118825081
  26. Georges Pius KM, Aurore Albane E, Marie-Paul B, et al. Neonatal sepsis: highlights and controversies. J Pediatr Neonatal. 2022;4(1):1–5.
  27. Bikhet M, Morsi M, Hara H, et al. The immune system in infants: relevance to xenotransplantation. Pediatr Transplant. 2020;24(7):e13795. doi: 10.1111/petr.13795 EDN: AKENRC
  28. Puchwein-Schwepcke A, Artmann S, Rajwich L, et al. Effect of gestational age and postnatal age on the endothelial glycocalyx in neonates. Sci Rep. 2021;11(1):3133. doi: 10.1038/s41598-021-81847-8 EDN: EFBGUC
  29. Wheeler DS, Wong HR, Zingarelli B. Pediatric sepsis — part I: “Children are not small adults!”. Open Inflamm J. 2011;4:4–15. doi: 10.2174/1875041901104010004
  30. Rawat S, Neeraj K, Preeti K, Prashant M. A review on type, etiological factors, definition, clinical features, diagnosis, management and prevention of neonatal sepsis. J Sci Innov Res. 2013;2(4):802–813.
  31. Odabasi IO, Bulbul A. Neonatal sepsis. Sisli Etfal Hastan Tip Bul. 2020;54(2):142–158. doi: 10.14744/SEMB.2020.00236 EDN: UHHVRQ
  32. Wynn JL, Wong HR. Pathophysiology of neonatal sepsis. Fetal Neonatal Physiol. 2017:1536–1552.e10. doi: 10.1016/B978-0-323-35214-7.00152-9
  33. Gorecki G, Cochior D, Moldovan C, Rusu E. Molecular mechanisms in septic shock (review). Exp Ther Med. 2021;22:1161. doi: 10.3892/etm.2021.10595 EDN: BUGRJS
  34. Anggraini D, Hasni D, Amelia R. Pathogenesis of sepsis. Sci J. 2022;1(4):332–339. doi: 10.56260/sciena.v1i4.63 EDN: SGZSDX
  35. Cornell TT, Wynn J, Shanley TP. Mechanisms and regulation of the gene-expression response to sepsis. Pediatrics. 2010;125(6):1248–1258. doi: 10.1542/peds.2009-3274 EDN: MYDEWJ
  36. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. J Immunol Res. 2012:985646. doi: 10.1155/2012/985646
  37. van den Berg JP, Westerbeek EA, van der Klis FR, Berbers GA, van Elburg RM. Transplacental transport of IgG antibodies to preterm infants: a review of the literature. Early Hum Dev. 2011;87(2):67–72. doi: 10.1016/j.earlhumdev.2010.11.003
  38. Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin. 2013;60(2):367–389. doi: 10.1016/j.pcl.2012.12.003
  39. Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ. 2007;335(7625):879–883. doi: 10.1136/bmj.39346.495880.AE
  40. Keskey R, Cone JT, DeFazio JR, Alverdy JC. The use of fecal microbiota transplant in sepsis. Transl Res. 2020;226:12–25. doi: 10.1016/j.trsl.2020.07.002 EDN: ENXZOX
  41. Belderbos ME, Levy O, Stalpers F, et al. Neonatal plasma polarizes TLR4-mediated cytokine responses towards low IL-12p70 and high IL-10 production via distinct factors. PLoS One. 2012;7:e33419. doi: 10.1371/journal.pone.0033419
  42. Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007;7:379–390. doi: 10.1038/nri2075
  43. Guilmot A, Hermann E, Braud VM, et al. Natural killer cell responses to infections in early life. J Innate Immun. 2011;3(3):280–288. doi: 10.1159/000323934
  44. Tsafaras GP, Ntontsi P, Xanthou G. Advantages and limitations of the neonatal immune system. Front Pediatr. 2020;8:5. doi: 10.3389/fped.2020.00005 EDN: PAHBFM
  45. Iba T, Umemura Y, Wada H, Levy JH. Roles of coagulation abnormalities and microthrombosis in sepsis: pathophysiology, diagnosis, and treatment. Arch Med Res. 2021;52(8):788–797. doi: 10.1016/j.arcmed.2021.07.003 EDN: YSOTBZ
  46. Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock — basics of diagnosis, pathophysiology and clinical decision making. Med Clin. 2020;104(4):573–585. doi: 10.1016/j.mcna.2020.02.011 EDN: SCDQAK
  47. Ilina YYu, Fot EV, Kuzkov VV, Kirov MYu. Sepsis-induced damage to endothelial glycocalyx (literature review). Annals of Critical Care. 2019;(2):32–39. doi: 10.21320/1818-474X-2019-2-32-39 EDN: ZEURRJ
  48. Aneja RK, Carcillo JA. Differences between adult and pediatric septic shock. Minerva Anestesiol. 2011;77(10):986–992. EDN: PMIKSV
  49. Kryuchko DS, Karpova AL, Prutkin ME, et al. Сollapse of newborns. Neonatology: News, Opinions, Training. 2013;2(2):67–79. EDN: RXQVHP
  50. Nyenga AM, Mukuku O, Wembonyama SO. Neonatal sepsis: a review of the literature. Theory Clin Pract Pediatr. 2021;3(1):94–101. doi: 10.25082/TCPP.2021.01.006 EDN: IUXDLA
  51. Gomanova LI, Fokina MA. Topical issues of clinical symptoms and diagnostics of septic shock. Russian Journal of Infection and Immunity. 2022;12(2):239–252. doi: 10.15789/2220-7619-TIO-1811 EDN: VFMEPD
  52. Lekmanov AU, Mironov PI. Pediatric sepsis — time to reach agreement. Russian Bulletin of Perinatology and Pediatrics. 2020;65(3):131–137. doi: 10.21508/1027-4065-2020-65-3-131-137 EDN: XVXJFX
  53. Parra-Llorca A, Pinilla-Gonzalez A, Torrejon-Rodriguez L, et al. Effects of sepsis on immune response, microbiome and oxidative metabolism in preterm infants. Children (Basel). 2023;10(3):602. doi: 10.3390/children10030602 EDN: TMXYVQ
  54. Moyo GPK, Sobguemezing D, Adjifack HT. Neonatal emergencies in full-term infants: a seasonal description in a pediatric referral hospital of Yaoundé, Cameroon. Asian J Psychiatry. 2020;6(2):87–90.
  55. Griffin MP, Lake DE, O’Shea TM, Moorman JR. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr Res. 2007;61(2):222–227. doi: 10.1203/01.pdr.0000252438.65759.af
  56. Kale A, Jay Bhaye D, Bonde V. Neonatal sepsis: an update. Iran J Neonatol. 2014;4(4):39–51. doi: 10.22038/IJN.2013.2012
  57. Mannan MA, Jahan MA, Hossain MA, et al. Septic shock in neonate: clinical profile and its outcome. J Pediatr Perinatol Child Health. 2022;6:177–187. doi: 10.26502/jppch.74050100 EDN: XPGOLY
  58. Goldstein B, Giroir B, Randolph A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8. doi: 10.1097/01.PCC.0000149131.72248.E6
  59. Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children. JAMA Pediatr. 2017;171(10):e172352. doi: 10.1001/jamapediatrics.2017.2352
  60. Wynn JL, Polin RA. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr Res. 2020;88(1):85–90. doi: 10.1038/s41390-019-0517-2
  61. Sankar J, Dhochak N, Kumar K, et al. Comparison of international pediatric sepsis consensus conference versus sepsis-3 definitions for children presenting with septic shock to a tertiary care center in India: a retrospective study. Pediatr Crit Care Med. 2019;20(3):e122–e129. doi: 10.1097/PCC.0000000000001864
  62. Schlapbach LJ, Watson RS, Sorce LR, et al. International consensus criteria for pediatric sepsis and septic shock. JAMA. 2024;331(8):665–674. doi: 10.1001/jama.2024.0179 EDN: CAKGAW
  63. Sanchez-Pinto LN, Bennett TD, DeWitt PE, et al. Development and validation of the Phoenix criteria for pediatric sepsis and septic shock. JAMA. 2024;331(8):675–686. doi: 10.1001/jama.2024.0196 EDN: BNNNPD
  64. Leteurtre S, Duhamel A, Salleron J, et al. PELOD-2: an update of the Pediatric logistic organ dysfunction score. Crit Care Med. 2013;41(7):1761–1773. doi: 10.1097/CCM.0b013e31828a2bbd
  65. Mironov PI, Aleksandrovich YS, Trembach AV, et al. Comparative assessment of the predictive ability of organ dysfunction scales PSOFA, PELOD 2 and phoenix sepsis score in pediatric sepsis: retrospective observational study. Annals of Critical Care. 2024;(3):152–160. doi: 10.21320/1818-474X-2024-3-152-160 EDN: DEQGHQ
  66. Mironov PI, Lekmanov AU. Evaluation of the validity of the nSOFA score in newborns with sepsis. Messenger of Anesthesiology and Resuscitation. 2021;18(2):56–61. doi: 10.21292/2078-5658-2021-18-2-56-61
  67. Berka I, Korček P, Janota J, et al. Neonatal sequential organ failure assessment (nSOFA) score within 72 hours after birth reliably predicts mortality and serious morbidity in very preterm infants. Diagnostics (Basel). 2022;12(6):1342. doi: 10.3390/diagnostics12061342 EDN: XPUYNK
  68. Farkas JD. The complete blood count to diagnose septic shock. J Thorac Dis. 2020;12(Suppl 1):S16–S21. doi: 10.21037/jtd.2019.12.63
  69. Laishram RS, Khuraijam RD. Hematological and biological markers of neonatal sepsis. Iran J Pathol. 2013;8:137–146.
  70. Gandhi P, Kondekar S. A review of the different haematological parameters and biomarkers used for diagnosis of neonatal sepsis. EMJ Hematol. 2019;7(1):85–92. doi: 10.33590/emjhematol/10313792
  71. Celik IH, Hanna M, Canpolat FE, et al. Diagnosis of neonatal sepsis: the past, present and future. Pediatr Res. 2022;91(2):337–350. doi: 10.1038/s41390-021-01696-z EDN: YOEAKN
  72. Golding CN, Schaltz-Buchholzer F, Sanca L, et al. Feasibility of manual white blood cell counts as a predictor of neonatal sepsis in a low-resource setting. Trans R Soc Trop Med Hyg. 2020;114(8):566–574. doi: 10.1093/trstmh/traa023 EDN: BUPTXP
  73. Schmutz N, Henry E, Jopling J, et al. Expected ranges for blood neutrophil concentrations of neonates: the Manroe and Mouzinho charts revisited. J Perinatol. 2008;28(4):275–281. doi: 10.1038/sj.jp.7211916
  74. Hornik CP, Benjamin DK, Becker KC, et al. Use of the complete blood cell count in early-onset neonatal sepsis. Pediatr Infect Dis J. 2012;31(8):799–802. doi: 10.1097/INF.0b013e318256905c
  75. Sumitro KR, Utomo MT, Widodo ADW. Neutrophil-to-lymphocyte ratio as an alternative marker of neonatal sepsis in developing countries. Oman Med J. 2021;36(1):e214. doi: 10.5001/omj.2021.05 EDN: XLHCSW
  76. Zhang S, Luan X, Zhang W, Jin Z. Platelet-to-lymphocyte and neutrophil-to-lymphocyte ratio as predictive biomarkers for early-onset neonatal sepsis. J Coll Physicians Surg Pak. 2021;31(7):821–824. doi: 10.29271/jpcsp.2021.07.821 EDN: ZGMDMO
  77. Hamiel U, Bahat H, Kozer E, et al. Diagnostic markers of acute infections in infants aged 1 week to 3 months: a retrospective cohort study. BMJ Open. 2018;8(1):e018092. doi: 10.1136/bmjopen-2017-018092
  78. Omran A, Maaroof A, Mohammad MHS, Abdelwahab A. Salivary C-reactive protein, mean platelet volume and neutrophil-lymphocyte ratio as diagnostic markers for neonatal sepsis. J Pediatr (Rio J). 2018;94(1):82–87. doi: 10.1016/j.jped.2017.03.006
  79. Can E, Hamilcikan Ş, Can C. The value of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio for detecting early-onset neonatal sepsis. J Pediatr Hematol Oncol. 2018;40(4):e229–e232. doi: 10.1097/MPH.0000000000001059
  80. Ljungström L, Pernestig AK, Jacobsson G, et al. Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte count ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis. PLoS One. 2017;12(7):e0181704. doi: 10.1371/journal.pone.0181704
  81. Perrone S, Lotti F, Longini M, et al. C-reactive protein in healthy term newborns during the first 48 hours of life. Arch Dis Child Fetal Neonatal Ed. 2018;103(2):F163–F166. doi: 10.1136/archdischild-2016-312506 EDN: YEGTNZ
  82. Boscarino G, Migliorino R, Carbone G, et al. Biomarkers of neonatal sepsis: where we are and where we are going. Antibiotics (Basel). 2023;12(8):1233. doi: 10.3390/antibiotics12081233 EDN: ZESARC
  83. Sharma D, Farahbakhsh N, Shastri S, Sharma P. Biomarkers for diagnosis of neonatal sepsis: a literature review. J Matern Fetal Neonatal Med. 2018;31(12):1646–1659. doi: 10.1080/14767058.2017.1322060 EDN: YGJKPB
  84. Pizzolato E, Ulla M, Galluzzo C, et al. Role of presepsin for the evaluation of sepsis in the emergency department. Clin Chem Lab Med. 2014;52(10):1395–1400. doi: 10.1515/cclm-2014-0199
  85. Abdel Motalib T. Soluble CD14-subtype [presepsin] and hepcidin as diagnostic and prognostic markers in early onset neonatal sepsis. Egypt J Med Microbiol. 2015;24(3):45–52.
  86. Rayan J. Presepsin as an early reliable diagnostic and prognostic marker of neonatal sepsis. Int J Adv Res. 2016;4(6):1538–1549. doi: 10.21474/IJAR01/1043
  87. Standage SW, Wong HR. Biomarkers for pediatric sepsis and septic shock. Expert Rev Anti Infect Ther. 2011;9(1):71–79. doi: 10.1586/eri.10.154
  88. Abd Elkareem RM, Ahmed HM, Meabed MH, et al. Diagnostic value of CD64 in early detection of neonatal sepsis. Comp Clin Pathol. 2020;29(3):639–643. doi: 10.1007/s00580-020-03100-4 EDN: NZDYNM
  89. Saifullin RF, Sinyavkin DO. Laboratory biomarkers of sepsis. Epidemiol Infect Dis. 2019;24(3):146–151. doi: 10.18821/1560-9529-2019-24-3-146-151 EDN: VSZTTS
  90. Biron BM, Ayala A, Lomas-Neira JL. Biomarkers for sepsis: what is and what might be? Biomark Insights. 2015;10(Suppl 4):7–17. doi: 10.4137/BMI.S29519
  91. Suetrong B, Walley KR. Lactic acidosis in sepsis: it’s not all anaerobic: implications for diagnosis and management. Chest. 2016;149(1):252–261. doi: 10.1378/chest.15-1703
  92. Paul R. Recognition, diagnostics, and management of pediatric severe sepsis and septic shock in the emergency department. Pediatr Clin North Am. 2018;65(6):1107–1118. doi: 10.1016/j.pcl.2018.07.012
  93. Scott HF, Donoghue AJ, Gaieski DF, et al. The utility of early lactate testing in undifferentiated pediatric systemic inflammatory response syndrome. Acad Emerg Med. 2012;19(11):1276–1280. doi: 10.1111/acem.12014
  94. Zhang J, Yan W, Dong Y, et al. Early identification and diagnosis, pathophysiology, and treatment of sepsis-related acute lung injury: a narrative review. J Thorac Dis. 2024;16(8):5457–5476. doi: 10.21037/jtd-24-1191 EDN: GVUMFH
  95. Flynn A, Chokkalingam Mani B, Mather PJ. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev. 2010;15(6):605–611. doi: 10.1007/s10741-010-9176-4 EDN: SWWEAW
  96. Kim JS, Kim M, Kim YJ, et al. Troponin testing for assessing sepsis-induced myocardial dysfunction in patients with septic shock. J Clin Med. 2019;8(2):239. doi: 10.3390/jcm8020239
  97. Ambriz-Alarcón MA, Arroyo-Espinosa DI, Meugniot-García H, et al. Acute myocardial injury assessed by high-sensitivity cardiac troponin I levels in adult patients with early sepsis at a tertiary referral center in Mexico: an exploratory study. J Cardiovasc Dev Dis. 2024;11(1):28. doi: 10.3390/jcdd11010028 EDN: NLMSML
  98. Wong HR, Caldwell JT, Cvijanovich NZ, et al. Prospective clinical testing and experimental validation of the pediatric sepsis biomarker risk model. Sci Transl Med. 2019;11(518):eaax9000. doi: 10.1126/scitranslmed.aax9000
  99. Wong HR, Cvijanovich NZ, Anas N, et al. Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers: PERSEVERE-XP. Am J Respir Crit Care Med. 2017;196(4):494–501. doi: 10.1164/rccm.201701-0066OC EDN: YGVSIT
  100. Pritulo LF, Akmollaev SD. Modern understanding of the diagnosis of sepsis in children. Tavricheskiy Mediko-Biologicheskiy Vestnik. 2023;26(2):92–100. (In Russ.) doi: 10.29039/2070-8092-2023-26-2-92-100 EDN: BNDEPS
  101. Raymond SL, Stortz JA, Mira JC, et al. Immunological defects in neonatal sepsis and potential therapeutic approaches. Front Pediatr. 2017;5:14. doi: 10.3389/fped.2017.00014
  102. Miller JM, Binnicker MJ, Campbell S, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):813–816. doi: 10.1093/cid/ciy584
  103. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–e106. doi: 10.1097/PCC.0000000000002198 EDN: ZTJXTH
  104. Fathi EM, Narchi H, Chedid F. Noninvasive hemodynamic monitoring of septic shock in children. World J Methodol. 2018;8(1):1–8. doi: 10.5662/wjm.v8.i1.1
  105. Davis AL, Carcillo JA, Aneja RK, et al. American college of critical care medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45(6):1061–1093. doi: 10.1097/CCM.0000000000002425
  106. Wong HR. Personalized medicine, endotypes, and intensive care medicine. Intensive Care Med. 2015;41(6):1138–1140. doi: 10.1007/s00134-015-3812-3 EDN: JYJQNL
  107. Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003–2017. doi: 10.1001/jama.2019.5791
  108. Davenport EE, Burnham KL, Radhakrishnan J, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016;4(4):259–271. doi: 10.1016/S2213-2600(16)00046-1
  109. Scicluna BP, Van Vught LA, Zwinderman AH, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;5(10):816–826. doi: 10.1016/S2213-2600(17)30294-1
  110. Wong HR, Cvijanovich N, Lin R, et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med. 2009;7:34. doi: 10.1186/1741-7015-7-34
  111. Wong HR, Cvijanovich NZ, Anas N, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med. 2015;191(3):309–315. doi: 10.1164/rccm.201410-1864OC
  112. Carcillo JA, Halstead ES, Hall MW, et al. Three hypothetical inflammation pathobiology phenotypes and pediatric sepsis-induced multiple organ failure outcome. Pediatr Crit Care Med. 2017;18(6):513–523. doi: 10.1097/PCC.0000000000001122 EDN: YGTYUX
  113. Sweeney TE, Azad TD, Donato M, et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med. 2018;46(6):915–925. doi: 10.1097/CCM.0000000000003084
  114. Sanchez-Pinto LN, Stroup EK, Pendergrast T, et al. Derivation and validation of novel phenotypes of multiple organ dysfunction syndrome in critically ill children. JAMA Netw Open. 2020;3(8):e209271. doi: 10.1001/jamanetworkopen.2020.9271 EDN: HPNTOG
  115. Koutroulis I, Velez T, Wang T, et al. Pediatric sepsis phenotypes for enhanced therapeutics: An application of clustering to electronic health records. J Am Coll Emerg Physicians Open. 2022;3(1):e12660. doi: 10.1002/emp2.12660 EDN: SGHOTI
  116. Qin Y, Kernan KF, Fan Z, et al. Machine learning derivation of four computable 24-h pediatric sepsis phenotypes to facilitate enrollment in early personalized anti-inflammatory clinical trials. Crit Care. 2022;26(1):128. doi: 10.1186/s13054-022-03977-3 EDN: VMXVVR
  117. Atreya MR, Huang M, Moore AR, et al. Identification and transcriptomic assessment of latent profile pediatric septic shock phenotypes. Crit Care. 2024;28(1):246. doi: 10.1186/s13054-024-05020-z EDN: QFOVPM
  118. Schwarz CE, Dempsey EM. Management of neonatal hypotension and shock. Semin Fetal Neonatal Med. 2020;25(5):101121. doi: 10.1016/j.siny.2020.101121 EDN: PCFBJB
  119. Wen L, Xu L. The efficacy of dopamine versus epinephrine for pediatric or neonatal septic shock: a meta-analysis of randomized controlled studies. Ital J Pediatr. 2020;46(1):6. doi: 10.1186/s13052-019-0768-x EDN: KIARZW
  120. Miranda M, Nadel S. Pediatric sepsis: a summary of current definitions and management recommendations. Curr Pediatr Rep. 2023;11(2):29–39. doi: 10.1007/s40124-023-00286-3 EDN: BELRPM
  121. Lee EP, Wu HP, Chan OW, et al. Hemodynamic monitoring and management of pediatric septic shock. Biomed J. 2022;45(1):63–73. doi: 10.1016/j.bj.2021.10.004 EDN: OUMXQJ
  122. Dilli D, Soylu H, Tekin N. Neonatal hemodynamics and management of hypotension in newborns. Turk Arch Pediatr. 2018;53(Suppl 1):S65–S75. doi: 10.5152/TurkPediatriArs.2018.01801
  123. Altit G, Vigny-Pau M, Barrington K, et al. Corticosteroid therapy in neonatal septic shock-do we prevent death? Am J Perinatol. 2018;35(2):146–151. doi: 10.1055/s-0037-1606188
  124. Alkhalaf HA, Alhamied NA, Alqahtani AM, et al. The association of corticosteroid therapy with mortality and length of stay among children with septic shock: a retrospective cohort study. Cureus. 2023;15(1):e33267. doi: 10.7759/cureus.33267 EDN: RDQCKZ
  125. Wong HR, Sweeney TE, Lindsell CJ. Simplification of a septic shock endotyping strategy for clinical application. Am J Respir Crit Care Med. 2017;195(2):263–265. doi: 10.1164/rccm.201607-1535LE
  126. Solé A, Jordan I, Bobillo S, et al. Venoarterial extracorporeal membrane oxygenation support for neonatal and pediatric refractory septic shock: more than 15 years of learning. Eur J Pediatr. 2018;177(8):1191–1200. doi: 10.1007/s00431-018-3174-2 EDN: YPCREM
  127. Galletta F, Cucinotta U, Gambadauro A, et al. Recent recommendations of neonatal septic shock: a review. J Biol Regul Homeost Agents. 2022;36(1(S1)):107–115. doi: 10.23812/j.biol.regul.homeost.agents.202236.1S1.17 EDN: EJKHZP
  128. Cruz AT, Lane RD, Balamuth F, et al. Updates on pediatric sepsis. J Am Coll Emerg Physicians Open. 2020;1(5):981–993. doi: 10.1002/emp2.12173 EDN: AGTQEY
  129. Silveira RC, Giacomini C, Procianoy RS. Neonatal sepsis and septic shock: concepts update and review. Rev Bras Ter Intensiva. 2010;22(3):280–290. doi: 10.1590/S0103-507X2010000300011
  130. Yu ZH, Tian GX, Wang YD, et al. The effect of GM-CSF and predictors of treatment outcome in pediatric septic shock patients. Ital J Pediatr. 2024. doi: 10.1186/s13052-025-01863-6.
  131. Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–532. doi: 10.1007/s00134-010-2088-x EDN: LKXKBV
  132. Sevketoglu E, Yildizdas D, Horoz OO, et al. Use of therapeutic plasma exchange in children with thrombocytopenia-associated multiple organ failure in the Turkish thrombocytopenia-associated multiple organ failure network. Pediatr Crit Care Med. 2014;15(8):e354–e359. doi: 10.1097/PCC.0000000000000227 EDN: UVZCEH
  133. Nguyen TC, Han YY, Kiss JE, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36(10):2878–2887. doi: 10.1097/ccm.0b013e318186aa49 EDN: MEGHWD
  134. Agnche Z, Yenus Yeshita H, Abdela Gonete K. Neonatal sepsis and its associated factors among neonates admitted to neonatal intensive care units in primary hospitals in central Gondar zone, northwest Ethiopia, 2019. Infect Drug Resist. 2020;13:3957–3967. doi: 10.2147/IDR.S276678 EDN: NIVZFM
  135. Niyoyita JC, Ndayisenga J, Omolo J, et al. Factors associated with neonatal sepsis among neonates admitted in Kibungo Referral Hospital, Rwanda. Sci Rep. 2024;14(1):15961. doi: 10.1038/s41598-024-66818-z EDN: CXDPIQ
  136. Saini SS, Shrivastav AK, Kumar J, et al. Predictors of mortality in neonatal shock: a retrospective cohort study. Shock. 2022;57(2):199–204. doi: 10.1097/SHK.0000000000001887 EDN: QTPZKD
  137. Jatsho J, Nishizawa Y, Pelzom D, Sharma R. Clinical and bacteriological profile of neonatal sepsis: a prospective hospital-based study. Int J Pediatr. 2020;2020:1835945. doi: 10.1155/2020/1835945 EDN: MUKKOP
  138. Wong HR, Cvijanovich NZ, Anas N, et al. Pediatric sepsis biomarker risk model-II: Redefining the pediatric sepsis biomarker risk model with septic shock phenotype. Crit Care Med. 2016;44(11):2010–2017. doi: 10.1097/CCM.0000000000001852
  139. Stoll B, Hansen N, Adams-Chapman I, et al. Neurodevelopment and growth impairment among extremely low birth-weight infants with neonatal infections. JAMA. 2004;292(19):2357–2650. doi: 10.1001/jama.292.19.2357
  140. Raturi A, Chandran S. Neonatal sepsis: Aetiology, pathophysiology, diagnostic advances and management strategies. Clin Med Insights Pediatr. 2024;18:11795565241281337. doi: 10.1177/11795565241281337 EDN: MFISJO

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Flowchart of literature source selection.

Download (190KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».