Evaluation of the effects in the in vitro system of synthetic thymic hexapeptide on the expression levels of NF-κB, IFNα/βR and CD119 neutrophilic granulocytes in patients with chronic herpes viral co-infections

Cover Page

Cite item

Full Text

Abstract

Background. Strategies used by herpes viruses with human cells are complex and multifaceted. On one hand, inborn defects in antiviral immune defense have been unveiled, which also affect interferon (IFN) system underlying development of chronic recalcitrant relapsing viral infections such as remittent respiratory viral infections, herpesvirus infections, and papillomavirus infections. On the other hand, numerous viruses are able to damage both immune system and IFN network. During inborn and acquired defects in IFN network, inborn or induced mutation in gene products involved in signaling cascades aimed at upregulating gene expression responsible for IFN production are observed. One of the strategies used by diverse viruses is altering some signaling pathways resulting in activated transcription factors including nuclear factor NF-kB. However, antiviral mechanisms executed by neutrophilic granulocytes (NGs), particularly affecting NF-kB expression have not been elucidated. Aim of the study: to study in vitro features of NF-kB expression and number of neutrophilic granulocytes (NG) expressing membrane IFNα/βR and IFNγR in patients with atypical chronic active herpes virus infections (AChA-HVI), followed by assessing an effect of arginyl-alpha-aspartyl-lysyl-valyl-tyrosyl-arginine — hexapeptide (HP), a synthetic analogue of the active center of the thymopoietin (active substance of drug “Imunofan”, Russia), on the expression of NG NF-kB and IFNα/βR and IFNγR. Materials and methods. We observed 25 patients of both sexes aged 23 to 64 years with AChA-HVI, manifested by chronic fatigue syndrome and cognitive disorders. Study design: stage 1 — clinical, ELISA, PCR methods, FC was used. Stage 2 — the in vitro experiment: 32 blood samples from 8 healthy adults and 375 blood samples from 25 patients with AChA-HVI were analyzed: % NG expressing NF-kB, IFNα/βR, IFNγR and the relevant MFI levels by using FC before and after incubation with HP. Results. Our study demonstrated low level (MFI) of NF-kB expression in 100% NG associated with decreased % of NG expressing IFNα/βR and IFNγR in all patients with AChA-HVI and low serum level for IFNα and IFNγ in comparison with healthy individuals. In the in vitro experiment there was shown that 100% of NG expressed NF-kB after exposure to HP. However, only 48% patients (SG 2) restored NF-kB expression level (MFI) to normal range and 52% of cases (SG 1) had no response. HP increased % of NG expressing IFNα/βR in SG 2 and increased % of NG expressing IFNγR in SG 1. Conclusions. It was shown, that influence of HP “in vitro” has ambiguous effects on the expression of NF-kB, % of NG expressing IFNα/βR and IFNγR in patients with AChA-HVI. We assume that different NF-kB response to HP is associated with inborn or secondary NF-kB deficiency.

About the authors

I. V. Nesterova

The Peoples’ Friendship University of Russia; Kuban State Medical University

Email: inesterova1@yandex.ru

PhD, MD (Medicine), Professor, Department of Allergology and Immunology

Russian Federation, Moscow; Krasnodar

E. O. Khalturina

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: jane_k@inbox.ru

PhD (Medicine), Associate Professor, Department of Microbiology, Virology and Immunology

Russian Federation, Moscow

V. N. Nelubin

Moscow State University of Medicine and Dentistry

Email: vlnelyubin@mail.ru

PhD, MD (Medicine), Professor

Russian Federation, Moscow

S. V. Khaidukov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry

Email: hsv@mail.ibch.ru

PhD, MD (Biology), Senior Researcher, Carbohydrate Laboratory

Russian Federation, Moscow

G. A. Chudilova

Kuban State Medical University

Email: chudilova2015@yandex.ru

PhD, MD (Biology), Associate Professor, Department of Clinical Immunology, Allergology and Laboratory Diagnostics

Russian Federation, Krasnodar

References

  1. Amici C., Belardo G., Rossi A., Santoro M.G. Activation of I kappa b kinase by herpes simplex virus type 1. A novel target for anti-herpetic therapy. J. Biol. Chem., 2001, vol. 276, no. 31, pp. 28759–28766.
  2. Caselli E., Fiorentini S., Amici C., Di Luca D., Caruso A., Santoro M.G. Human herpesvirus 8 acute infection of endothelial cells induces monocyte chemoattractant protein 1-dependent capillary-like structure formation: role of the IKK/NF-kB pathway. Blood, 2007, vol. 109, no. 7, pp. 2718–2726. doi: 10.1182/blood-2006-03-012500
  3. Charostad J., Nakhaie M., Dehghani A., Faghihloo E. The interplay between EBV and KSHV viral products and NF-kB pathway in oncogenesis. Infect. Agents Cancer, 2020, vol. 15: 62. doi: 10.1186/s13027-020-00317-4
  4. Chew T., Taylor K.E., Mossman K.L. Innate and adaptive immune responses to herpes simplex virus. Viruses, 2009, vol. 1, pp. 979–1002. doi: 10.3390/v1030979
  5. De Jesus A.A., Hou Y., Brooks S. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest., 2020, vol. 130, no. 4, pp. 1669–1682. doi: 10.1172/JCI129301
  6. De Oliveira D.E., Ballon G., Cesarman E. NF-kB signaling modulation by EBV and KSHV. Trends Microbiol., 2010, vol. 18, no. 6, pp. 248–257.
  7. Dell’Oste V., Gatti D., Giorgio A.G., Gariglio M., Landolfo S., De Andrea M. The interferon-inducible DNA-sensor protein IFI16: a key player in the antiviral response. New Microbiol., 2015, vol. 38, no. 1, pp. 5–20.
  8. Ehrlich E.S., Chmura J.C., Smith J.C., Kalu N.N., Hayward G.S. KSHV RTA abolishes NF-kB responsive gene expression during lytic reactivation by targeting vFLIP for degradation via the proteasome. PLoS One, 2014, vol. 9, no. 3: e91359. doi: 10.1371/journal.pone.0091359
  9. Gianni T., Leoni V., Campadelli-Fiume G. Type I interferon and NF-kappaB activation elicited by herpes simplex virus gH/gL via alphavbeta3 integrin in epithelial and neuronal cell lines. J. Virol., 2013, vol. 87, no. 24, pp. 13911–13916.
  10. Hatada E.N., Krappmann D., Scheidereit C. NF-kappaB and the innate immune response. Curr. Opin. Immunol., 2000, vol. 12, pp. 52–58. doi: 10.1016/S0952-7915(99)00050-3
  11. Hiscott J. Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev., 2007, vol. 18, pp. 483–490.
  12. Jiang J., Zhao M., Chang C., Wu H., Lu Q. Type I interferons in the pathogenesis and treatment of autoimmune diseases. Clin. Rev. Allergy Immunol., 2020, vol. 59, no. 2, pp. 248–272. doi: 10.1007/s12016-020-08798-2
  13. Kalamvoki M., Roizman B. HSV-1 degrades, stabilizes, requires, or is stung by STING depending on ICP0, the US3 protein kinase, and cell derivation. Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. E611–E617. doi: 10.1073/pnas.1323414111
  14. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K.J., Takeuchi O., Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol., 2005, vol. 6, pp. 981–988. doi: 10.1038/ni1243
  15. Kim J.C., Lee S.Y., Kim S.Y., Kim J.K., Kim H.J., Lee H.M., Choi M.S., Min J.S., Kim M.J., Choi H.S., Ahn J.K. HSV-1 ICP27 suppresses NF-kappaB activity by stabilizing IkappaBalpha. FEBS Lett., 2008, vol. 582, no. 16, pp. 2371–2376. doi: 10.1016/ j.febslet.2008.05.044
  16. Le Negrate G. Viral interference with innate immunity by preventing NF-kappaB activity. Cell Microbiol., 2012, vol. 14, no. 2, pp. 168–181. doi: 10.1111/j.1462-5822.2011.01720.x
  17. Lepelley A., Martin-Niclós M.J., Le Bihan M., Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med., 2020, vol. 217, no. 11: e20200600. doi: 10.1084/jem.20200600
  18. Low-Calle A.M., Prada-Arismendy J., Castellanos J.E. Study of interferon-beta antiviral activity against Herpes simplex virus type 1 in neuron-enriched trigeminal ganglia cultures. Virus Res., 2014, vol. 180, pp. 49–58. doi: 10.1016/j.virusres.2013.12.022
  19. Ma F., Li B., Liu S.Y., Iyer S.S., Yu Y., Wu A., Cheng G. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol., 2015, vol. 194, pp. 1545–1554. doi: 10.4049/jimmunol.1402066
  20. Marino-Merlo F., Papaianni E., Frezza C., Pedatella S., De Nisco M., Macchi B., Grelli S., Mastino A. NF-kB-dependent production of ROS and restriction of HSV-1 infection in U937 monocytic cells. Viruses, 2019, vol. 11, no. 5: 428. doi: 10.3390/v11050428
  21. Michalska A., Blaszczyk K., Wesoly J., Bluyssen A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and type II IFN responses. Front. Immunol., 2018, vol. 9: 1135. doi: 10.3389/fimmu.2018.01135
  22. O’Neill L.A., Bowie A.G. Sensing and signaling in antiviral innate immunity. Curr. Biol., 2010, vol. 20, pp. R328–R333. doi: 10.1016/j.cub.2010.01.044
  23. Okada S., Asano T., Moriya K., Boisson-Dupuis S. Human STAT1 gain-of-function heterozygous mutations: chronic mucocutaneous candidiasis and type I interferonopathy. J. Clin. Immunol., 2020, vol. 40, no. 8, pp. 1065–1081. doi: 10.1007/s10875-020-00847-x
  24. Poma P. NF-kB and disease. Int. J. Mol. Sci., 2020, vol. 21, no. 23: 9181. doi: 10.3390/ijms21239181
  25. Roizman B., Whitley R.J. An inquiry into the molecular basis of HSV latency and reactivation. Annu. Rev. Microbiol., 2013, vol. 67, pp. 355–374. doi: 10.1146/annurev-micro-092412-155654
  26. Santoro M.G., Rossi A., Amici C. NF-kappaB and virus infection: who controls whom. EMBO J., 2003, vol. 22, pp. 2552–2560.
  27. Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, vol. 46, no. 5, pp. 705–716.
  28. Sun L., Wu J., Du F., Chen X., Chen Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, vol. 339, pp. 786–791. doi: 10.1126/science.1232458
  29. Swiecki M., Omattage N.S., Brett T.J. BST-2/tetherin: structural biology, viral antagonism, and immunobiology of a potent host antiviral factor. Mol. Immunol., 2013, vol. 54, pp. 132–139. doi: 10.1016/j.molimm.2012.11.008
  30. Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology, 2013, vol. 218, pp. 1312–1321. doi: 10.1016/j.imbio.2013.07.007
  31. Vahed H., Agrawal A., Srivastava R., Prakash S., Coulon P.A., Roy S., BenMohamed L. Unique type I interferon, expansion/survival cytokines, and JAK/STAT gene signatures of multifunctional herpes simplex virus-specific effector memory CD8+ TEM cells are associated with asymptomatic herpes in humans. J. Virol., 2019, vol. 93, no. 4: e01882-18. doi: 10.1128/JVI.01882-18
  32. Valentine R., Dawson C.W., Hu C., Shah K.M., Owen T.J., Date K.L., Maia S.P., Shao J., Arrand J.R., Young L.S., O’Neil J.D. Epstein–Barr virus-encoded EBNA1 inhibits the canonical NF-kB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol. Cancer., 2010, vol. 9, no. 1: 1. doi: 10.1186/1476-4598-9-1
  33. Van Lint A.L., Murawski M.R., Goodbody R.E., Severa M., Fitzgerald K.A., Finberg R.W., Knipe D.M., Kurt-Jones E.A. Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling. J. Virol., 2010, vol. 84, pp. 10802–10811. doi: 10.1128/JVI.00063-10
  34. Wang K., Ni L., Wang S., Zheng C. Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-kappaB activation. J. Virol., 2014, vol. 88, pp. 7941–7951. doi: 10.1128/JVI.03394-13
  35. Wei H., Prabhu L., Hartley A.-V., Martin M., Sun E., Jiang G., Liu Y., Lu T. Methylation of NF-kB and its role in gene regulation. In: Gene expression and regulation in mammalian cells. Transcription from general aspects. Ed. by F. Uchiumi. Ch. 14. 2018, pp. 291–306. doi: 10.5772/intechopen.72552
  36. Wu D.X., Fu X.Y., Gong G.Z., Sun K.W., Gong H.Y., Novel HBV mutations and their value in predicting efficacy of conventional interferon. Hepatobiliary Pancreat Dis. Int., 2017, vol. 16, no. 2, pp. 189–196. doi: 10.1016/s1499-3872(16)60184-4
  37. Xing J., Ni L., Wang S., Wang K., Lin R., Zheng C. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J. Virol., 2013, vol. 87, pp. 9788–9801. doi: 10.1128/JVI.01440-13
  38. Yamashiro L.H., Wilson S.C., Morrison H.M. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat. Commun., 2020, vol. 11, no. 1: 3382. doi: 10.1038/s41467-020-17156-x
  39. Zhang J., Wang S., Wang K., Zheng C. Herpes simplex virus 1 DNA polymerase processivity factor UL42 inhibits TNF-alpha-induced NF-kappaB activation by interacting with p65/RelA and p50/NF-kappaB1. Med. Microbiol. Immunol., 2013, vol. 202, pp. 313–325.
  40. Zhang Q., Lenardo M.J., Baltimore D. 30 years of NF-kB: a blossoming of relevance to human pathobiology. Cell, 2017, vol. 168, no. 1–2, pp. 37–57. doi: 10.1016/j.cell.2016.12.012

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Expression levels of nuclear factor NF-B in neutrophilic granulocytes of patients suffering from AChA-HVI and in control group (conditionally healthy individuals) according to MFI distribution

Download (28KB)
3. Figure 2 Comparison of the expression levels (MFI) for NF-B in neutrophilic granulocytes from patients with AChA-HVI before and after exposure to HP in in vitro experimental system

Download (13KB)
4. Figure 3. Count of NG expressing membrane receptors IFNα/βR and IFNγ (CD119) before and after HP exposure in patients suffering from AChA-HVI

Download (68KB)

Copyright (c) 2022 Nesterova I.V., Khalturina E.O., Nelubin V.N., Khaidukov S.V., Chudilova G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».