Evaluation of the effects in the in vitro system of synthetic thymic hexapeptide on the expression levels of NF-κB, IFNα/βR and CD119 neutrophilic granulocytes in patients with chronic herpes viral co-infections
- 作者: Nesterova I.V.1,2, Khalturina E.O.3, Nelubin V.N.4, Khaidukov S.V.5, Chudilova G.A.2
-
隶属关系:
- The Peoples’ Friendship University of Russia
- Kuban State Medical University
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- Moscow State University of Medicine and Dentistry
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- 期: 卷 12, 编号 5 (2022)
- 页面: 850-858
- 栏目: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/119109
- DOI: https://doi.org/10.15789/2220-7619-EOT-1928
- ID: 119109
如何引用文章
全文:
详细
Background. Strategies used by herpes viruses with human cells are complex and multifaceted. On one hand, inborn defects in antiviral immune defense have been unveiled, which also affect interferon (IFN) system underlying development of chronic recalcitrant relapsing viral infections such as remittent respiratory viral infections, herpesvirus infections, and papillomavirus infections. On the other hand, numerous viruses are able to damage both immune system and IFN network. During inborn and acquired defects in IFN network, inborn or induced mutation in gene products involved in signaling cascades aimed at upregulating gene expression responsible for IFN production are observed. One of the strategies used by diverse viruses is altering some signaling pathways resulting in activated transcription factors including nuclear factor NF-kB. However, antiviral mechanisms executed by neutrophilic granulocytes (NGs), particularly affecting NF-kB expression have not been elucidated. Aim of the study: to study in vitro features of NF-kB expression and number of neutrophilic granulocytes (NG) expressing membrane IFNα/βR and IFNγR in patients with atypical chronic active herpes virus infections (AChA-HVI), followed by assessing an effect of arginyl-alpha-aspartyl-lysyl-valyl-tyrosyl-arginine — hexapeptide (HP), a synthetic analogue of the active center of the thymopoietin (active substance of drug “Imunofan”, Russia), on the expression of NG NF-kB and IFNα/βR and IFNγR. Materials and methods. We observed 25 patients of both sexes aged 23 to 64 years with AChA-HVI, manifested by chronic fatigue syndrome and cognitive disorders. Study design: stage 1 — clinical, ELISA, PCR methods, FC was used. Stage 2 — the in vitro experiment: 32 blood samples from 8 healthy adults and 375 blood samples from 25 patients with AChA-HVI were analyzed: % NG expressing NF-kB, IFNα/βR, IFNγR and the relevant MFI levels by using FC before and after incubation with HP. Results. Our study demonstrated low level (MFI) of NF-kB expression in 100% NG associated with decreased % of NG expressing IFNα/βR and IFNγR in all patients with AChA-HVI and low serum level for IFNα and IFNγ in comparison with healthy individuals. In the in vitro experiment there was shown that 100% of NG expressed NF-kB after exposure to HP. However, only 48% patients (SG 2) restored NF-kB expression level (MFI) to normal range and 52% of cases (SG 1) had no response. HP increased % of NG expressing IFNα/βR in SG 2 and increased % of NG expressing IFNγR in SG 1. Conclusions. It was shown, that influence of HP “in vitro” has ambiguous effects on the expression of NF-kB, % of NG expressing IFNα/βR and IFNγR in patients with AChA-HVI. We assume that different NF-kB response to HP is associated with inborn or secondary NF-kB deficiency.
作者简介
I. Nesterova
The Peoples’ Friendship University of Russia; Kuban State Medical University
Email: inesterova1@yandex.ru
PhD, MD (Medicine), Professor, Department of Allergology and Immunology
俄罗斯联邦, Moscow; KrasnodarE. Khalturina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
编辑信件的主要联系方式.
Email: jane_k@inbox.ru
PhD (Medicine), Associate Professor, Department of Microbiology, Virology and Immunology
俄罗斯联邦, MoscowV. Nelubin
Moscow State University of Medicine and Dentistry
Email: vlnelyubin@mail.ru
PhD, MD (Medicine), Professor
俄罗斯联邦, MoscowS. Khaidukov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
Email: hsv@mail.ibch.ru
PhD, MD (Biology), Senior Researcher, Carbohydrate Laboratory
俄罗斯联邦, MoscowG. Chudilova
Kuban State Medical University
Email: chudilova2015@yandex.ru
PhD, MD (Biology), Associate Professor, Department of Clinical Immunology, Allergology and Laboratory Diagnostics
俄罗斯联邦, Krasnodar参考
- Amici C., Belardo G., Rossi A., Santoro M.G. Activation of I kappa b kinase by herpes simplex virus type 1. A novel target for anti-herpetic therapy. J. Biol. Chem., 2001, vol. 276, no. 31, pp. 28759–28766.
- Caselli E., Fiorentini S., Amici C., Di Luca D., Caruso A., Santoro M.G. Human herpesvirus 8 acute infection of endothelial cells induces monocyte chemoattractant protein 1-dependent capillary-like structure formation: role of the IKK/NF-kB pathway. Blood, 2007, vol. 109, no. 7, pp. 2718–2726. doi: 10.1182/blood-2006-03-012500
- Charostad J., Nakhaie M., Dehghani A., Faghihloo E. The interplay between EBV and KSHV viral products and NF-kB pathway in oncogenesis. Infect. Agents Cancer, 2020, vol. 15: 62. doi: 10.1186/s13027-020-00317-4
- Chew T., Taylor K.E., Mossman K.L. Innate and adaptive immune responses to herpes simplex virus. Viruses, 2009, vol. 1, pp. 979–1002. doi: 10.3390/v1030979
- De Jesus A.A., Hou Y., Brooks S. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest., 2020, vol. 130, no. 4, pp. 1669–1682. doi: 10.1172/JCI129301
- De Oliveira D.E., Ballon G., Cesarman E. NF-kB signaling modulation by EBV and KSHV. Trends Microbiol., 2010, vol. 18, no. 6, pp. 248–257.
- Dell’Oste V., Gatti D., Giorgio A.G., Gariglio M., Landolfo S., De Andrea M. The interferon-inducible DNA-sensor protein IFI16: a key player in the antiviral response. New Microbiol., 2015, vol. 38, no. 1, pp. 5–20.
- Ehrlich E.S., Chmura J.C., Smith J.C., Kalu N.N., Hayward G.S. KSHV RTA abolishes NF-kB responsive gene expression during lytic reactivation by targeting vFLIP for degradation via the proteasome. PLoS One, 2014, vol. 9, no. 3: e91359. doi: 10.1371/journal.pone.0091359
- Gianni T., Leoni V., Campadelli-Fiume G. Type I interferon and NF-kappaB activation elicited by herpes simplex virus gH/gL via alphavbeta3 integrin in epithelial and neuronal cell lines. J. Virol., 2013, vol. 87, no. 24, pp. 13911–13916.
- Hatada E.N., Krappmann D., Scheidereit C. NF-kappaB and the innate immune response. Curr. Opin. Immunol., 2000, vol. 12, pp. 52–58. doi: 10.1016/S0952-7915(99)00050-3
- Hiscott J. Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev., 2007, vol. 18, pp. 483–490.
- Jiang J., Zhao M., Chang C., Wu H., Lu Q. Type I interferons in the pathogenesis and treatment of autoimmune diseases. Clin. Rev. Allergy Immunol., 2020, vol. 59, no. 2, pp. 248–272. doi: 10.1007/s12016-020-08798-2
- Kalamvoki M., Roizman B. HSV-1 degrades, stabilizes, requires, or is stung by STING depending on ICP0, the US3 protein kinase, and cell derivation. Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. E611–E617. doi: 10.1073/pnas.1323414111
- Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K.J., Takeuchi O., Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol., 2005, vol. 6, pp. 981–988. doi: 10.1038/ni1243
- Kim J.C., Lee S.Y., Kim S.Y., Kim J.K., Kim H.J., Lee H.M., Choi M.S., Min J.S., Kim M.J., Choi H.S., Ahn J.K. HSV-1 ICP27 suppresses NF-kappaB activity by stabilizing IkappaBalpha. FEBS Lett., 2008, vol. 582, no. 16, pp. 2371–2376. doi: 10.1016/ j.febslet.2008.05.044
- Le Negrate G. Viral interference with innate immunity by preventing NF-kappaB activity. Cell Microbiol., 2012, vol. 14, no. 2, pp. 168–181. doi: 10.1111/j.1462-5822.2011.01720.x
- Lepelley A., Martin-Niclós M.J., Le Bihan M., Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med., 2020, vol. 217, no. 11: e20200600. doi: 10.1084/jem.20200600
- Low-Calle A.M., Prada-Arismendy J., Castellanos J.E. Study of interferon-beta antiviral activity against Herpes simplex virus type 1 in neuron-enriched trigeminal ganglia cultures. Virus Res., 2014, vol. 180, pp. 49–58. doi: 10.1016/j.virusres.2013.12.022
- Ma F., Li B., Liu S.Y., Iyer S.S., Yu Y., Wu A., Cheng G. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol., 2015, vol. 194, pp. 1545–1554. doi: 10.4049/jimmunol.1402066
- Marino-Merlo F., Papaianni E., Frezza C., Pedatella S., De Nisco M., Macchi B., Grelli S., Mastino A. NF-kB-dependent production of ROS and restriction of HSV-1 infection in U937 monocytic cells. Viruses, 2019, vol. 11, no. 5: 428. doi: 10.3390/v11050428
- Michalska A., Blaszczyk K., Wesoly J., Bluyssen A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and type II IFN responses. Front. Immunol., 2018, vol. 9: 1135. doi: 10.3389/fimmu.2018.01135
- O’Neill L.A., Bowie A.G. Sensing and signaling in antiviral innate immunity. Curr. Biol., 2010, vol. 20, pp. R328–R333. doi: 10.1016/j.cub.2010.01.044
- Okada S., Asano T., Moriya K., Boisson-Dupuis S. Human STAT1 gain-of-function heterozygous mutations: chronic mucocutaneous candidiasis and type I interferonopathy. J. Clin. Immunol., 2020, vol. 40, no. 8, pp. 1065–1081. doi: 10.1007/s10875-020-00847-x
- Poma P. NF-kB and disease. Int. J. Mol. Sci., 2020, vol. 21, no. 23: 9181. doi: 10.3390/ijms21239181
- Roizman B., Whitley R.J. An inquiry into the molecular basis of HSV latency and reactivation. Annu. Rev. Microbiol., 2013, vol. 67, pp. 355–374. doi: 10.1146/annurev-micro-092412-155654
- Santoro M.G., Rossi A., Amici C. NF-kappaB and virus infection: who controls whom. EMBO J., 2003, vol. 22, pp. 2552–2560.
- Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, vol. 46, no. 5, pp. 705–716.
- Sun L., Wu J., Du F., Chen X., Chen Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, vol. 339, pp. 786–791. doi: 10.1126/science.1232458
- Swiecki M., Omattage N.S., Brett T.J. BST-2/tetherin: structural biology, viral antagonism, and immunobiology of a potent host antiviral factor. Mol. Immunol., 2013, vol. 54, pp. 132–139. doi: 10.1016/j.molimm.2012.11.008
- Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology, 2013, vol. 218, pp. 1312–1321. doi: 10.1016/j.imbio.2013.07.007
- Vahed H., Agrawal A., Srivastava R., Prakash S., Coulon P.A., Roy S., BenMohamed L. Unique type I interferon, expansion/survival cytokines, and JAK/STAT gene signatures of multifunctional herpes simplex virus-specific effector memory CD8+ TEM cells are associated with asymptomatic herpes in humans. J. Virol., 2019, vol. 93, no. 4: e01882-18. doi: 10.1128/JVI.01882-18
- Valentine R., Dawson C.W., Hu C., Shah K.M., Owen T.J., Date K.L., Maia S.P., Shao J., Arrand J.R., Young L.S., O’Neil J.D. Epstein–Barr virus-encoded EBNA1 inhibits the canonical NF-kB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol. Cancer., 2010, vol. 9, no. 1: 1. doi: 10.1186/1476-4598-9-1
- Van Lint A.L., Murawski M.R., Goodbody R.E., Severa M., Fitzgerald K.A., Finberg R.W., Knipe D.M., Kurt-Jones E.A. Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling. J. Virol., 2010, vol. 84, pp. 10802–10811. doi: 10.1128/JVI.00063-10
- Wang K., Ni L., Wang S., Zheng C. Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-kappaB activation. J. Virol., 2014, vol. 88, pp. 7941–7951. doi: 10.1128/JVI.03394-13
- Wei H., Prabhu L., Hartley A.-V., Martin M., Sun E., Jiang G., Liu Y., Lu T. Methylation of NF-kB and its role in gene regulation. In: Gene expression and regulation in mammalian cells. Transcription from general aspects. Ed. by F. Uchiumi. Ch. 14. 2018, pp. 291–306. doi: 10.5772/intechopen.72552
- Wu D.X., Fu X.Y., Gong G.Z., Sun K.W., Gong H.Y., Novel HBV mutations and their value in predicting efficacy of conventional interferon. Hepatobiliary Pancreat Dis. Int., 2017, vol. 16, no. 2, pp. 189–196. doi: 10.1016/s1499-3872(16)60184-4
- Xing J., Ni L., Wang S., Wang K., Lin R., Zheng C. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J. Virol., 2013, vol. 87, pp. 9788–9801. doi: 10.1128/JVI.01440-13
- Yamashiro L.H., Wilson S.C., Morrison H.M. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat. Commun., 2020, vol. 11, no. 1: 3382. doi: 10.1038/s41467-020-17156-x
- Zhang J., Wang S., Wang K., Zheng C. Herpes simplex virus 1 DNA polymerase processivity factor UL42 inhibits TNF-alpha-induced NF-kappaB activation by interacting with p65/RelA and p50/NF-kappaB1. Med. Microbiol. Immunol., 2013, vol. 202, pp. 313–325.
- Zhang Q., Lenardo M.J., Baltimore D. 30 years of NF-kB: a blossoming of relevance to human pathobiology. Cell, 2017, vol. 168, no. 1–2, pp. 37–57. doi: 10.1016/j.cell.2016.12.012
补充文件
