TECHNOLOGICAL QUALITY ASSURANCE IN ROBOTIC FINISH BASED ON ADAPTATION TOOLS

Cover Page

Cite item

Full Text

Abstract

Industrial robots are used for machining in mechanical engineering. This trend is associated with an increase in the geomet-ric complexity of parts and wider kinematic capabilities of industrial robots in comparison with classical CNC machines. The article analyzes the technological capabilities of using industrial robots in finishing machining operations, and pro-vides the reasons for limited robots introduction Schemes of construction of technological operations are given: "part in hand" and "tool in hand". The factors influencing the choice of the preferred machining are studied. The areas of effective application of passive and active adaptation tools are given. The article provides two main reasons for possible vibrations under robotic manipulation: e.g. low rigidity of the industrial robot structure and shape errors effect in the previous opera-tion. The problem of developing a sustainable code conversion for the amount of material removal is discussed. The problem statement is due to the fact that the model of the cutting process varies greatly depending on the cutting conditions. Force control work makes it possible to take into account the rigidity of the robot without sacrificing the running accuracy in six coordinates. The article discusses the use of a neural network and a genetic algorithm in the development of a robotic pol-ishing operation for a flat surface within limited access constraints. The authors of the article have developed a postproces-sor for controlling an industrial robot in case of variable tool overhang and uneven tolerance. Special technological equipment has been designed and manufactured for this purpose. Experiments on testing of the developed algorithmic and software have been conducted in the laboratory "Industrial Robots and Automation Tools"

About the authors

Mikhail Vladimirovich Vartanov

Moscow Polytechnic University

Email: natalia.vartanova@ba.ru

Aleksander Igorevich Schwartz

Moscow Polytechnic University

Dmitriy Nikolaevich Mironov

Moscow Polytechnic University

References

  1. Xiaolong Ke and ets. Review on robot-assisted pol-ishing: Status and future trends // Robotics and Computer-Integrated Manufacturing, 2023. https://doi.org/10.1016/j.rcim.2022.102482
  2. Fan Chen, Huan Zhao, Dingwei Li, Lin Chen, Chao Tan, Han Ding, Contact force control and vibration suppression in robotic polishing with a smart end effector // Robotics and Computer-Integrated Manufacturing, 2019. p. 391−403
  3. Gienke, O., Pan, Z., Yuan, L. et al. Mode coupling chatter prediction and avoidance in robotic machining pro-cess // Int. J. Adv. Manuf. Technol. 2019. p. 104. https://doi.org/10.1007/s00170-019-04053
  4. Schwarz A.I., Mironov D.N., Vartanov M.V. Methods of vibration suppression during robotic processing // STANKOINSTRUMENT, No. 3, (032), 2023. P. 34−41. https://doi.org/10.22184/2499-9407.2023.32.3.34.41
  5. Pan, Z. & Zhang, H. Robotic machining from pro-gramming to process control: a complete solution by force control // Industrial Robot, 2008. 35. No. 5. P. 400−409. https://doi.org/10.1108/01439910810893572
  6. J. Zhang, Y. Shi, X. Lin, Z. Li, Parameter optimi-zation of five-axis polishing using abrasive belt flap wheel for blisk blade // J. Mech. Sci. Technol31, 2017. 4805–4812. https://doi.org/10.1007/s00170-017-0717-z
  7. J. Pandremenos, C. Doukas, P. Stavropoulos, G. Chryssolouris Machining with robots: a critical review // 7th International Conference on Digital Enterprise Tech-nology. Athens. Greece. 2011.
  8. Cen, L., Melkote, S. N., Castle, J., and Appelman, H. A Method for Mode Coupling Chatter Detection and Suppression in Robotic Milling // ASME. J. Manuf. Sci. Eng., 2018. 140 (8). https://doi.org/10.1115/1.4040161
  9. Schneider, U., Drust, M., Ansaloni, M. et al. Im-proving robotic machining accuracy through experimental error investigation and modular compensation // Int. J. Adv. Manuf .Technol., 2016. p. 85, https://doi.org/10.1007/s00170014-.6021-2
  10. Tunc, L., Stoddart, D. Tool path pattern and feed direction selection in robotic milling for increased chatter-free material removal rate // Int J Adv Manuf Technol 89, 2017. P. 2907–2918. https://doi.org/10.1007/s00170-016-98962
  11. Wei Ji, Lihui Wang. Industrial robotic machin-ing: a review // The International Journal of Advanced Manufacturing Technology, 2019. P. 1239–1255, https://doi.org/10.1007/s00170-019-03403-z
  12. Russell Stewart, Norvig Peter. Artificial intelli-gence: a modern approach // Publishing house "Williams", 2016. P. 1408.
  13. Segreto T., Karam, S. & Teti, R. Signal pro-cessing and pattern recognition for surface roughness as-sessment in multiple sensors monitoring of robot-assisted polishing. // Int. J. Adv. Manuf. Technol. 90. 2017. P. 1023–1033 https://doi.org/10.1007/s00170-016-9463-x
  14. Khalick Mohammad A.E., Hong, J. & Wang, D. Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm. // Int. J. Adv. Manuf. Technol. 93, 1463–1471 (2017). https://doi.org/10.1007/s00170-017-0524-6
  15. Denavit, Jacques; Hartenberg, Richard Scheunemann A kinematic notation for lower-pair mecha-nisms based on matrices // Journal of Applied Mechanics. 22 (2), 1955, P. 215–221. https://doi.org/10.1115/1.4011045

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».