На основе законов трибологии, триботехники и результатов экспериментальных исследований изменений структуры и свойств в зоне контактной трибодеформации конструкционных сталей и сплавов разных структурных классов, подвергнутых азотированию, разработан подход к прогнозированию и комплексной оценке триботехнической эффективности азотирования конструкционных материалов и изделий из них. Анализ закономерностей изменения структуры диффузионной зоны азотированных сталей перлитного, мартенситного и аустенитного классов и относительной износостойкости в зависимости от их состава и технологических параметров процесса обработки показал, что максимальной износостойкостью обладает азотированный слой, содержащий упрочняющие дисперсные частицы некогерентных нитридов, что обеспечивает меньшую склонность к охрупчиванию азотированного слоя вследствие снижения уровня микродеформации кристаллической решетки матрицы. При этом предварительные виды обработки (термическая и деформационная) азотируемых сталей являются средством формирования структурно-фазового состояния поверхностного слоя, обладающего повышенными триботехническими характеристиками. Для азотированных сплавов на основе железа с разными кристаллическими решетками матрицы экспериментально установлены наиболее значимые характеристики структурного состояния и свойств поверхностных слоев, влияющих на уровень поверхностного разрушения при трении: размер частиц нитридов легирующих элементов, расстояние между ними, плотность их распределения, микродеформация кристаллической решетки матрицы, значения физического уширения рентгеновских линий структурных составляющих материала зоны деформации при трении, твердость азотированного слоя и ее изменения при трении. Эти экспериментальные результаты положены в основу предлагаемого метода оценки и прогнозирования триботехнической эффективности металлов. Его суть состоит в том, что на основе трибологического критерия, содержащего микро- и макроскопические характеристики материала зоны контактной деформации при трении, проводится выбор режимов обработки изделия для обеспечения допустимого уровня интенсивности изнашивания. Затем экспериментально с помощью метода поверхностной пластической деформации оценивается способность азотированного слоя, сформировавшегося в результате обработки по выбранному режиму, воспринимать поверхностную пластическую деформацию без разрушения, что служит обоснованием выбранного режима азотирования. Завершением оценки является определение величин предельной работоспособности азотированного материала в условиях трения и изнашивания (предельно допустимого давления, при котором пара работает устойчиво; критического давления, после которого пара неработоспособна, но возможна ее эксплуатация при кратковременных перегрузках; средней суммарной интенсивности изнашивания пары в целом). Совокупность выявленных параметров позволяет рекомендовать материал, его обработку и прогнозировать режимы эксплуатации и долговечность трибосопряжения.