Адсорбция бария на поверхности GaN(0001)

Обложка

Цитировать

Полный текст

Аннотация

Впервые проведен расчет адсорбции атомов бария на поверхности грани (0001) GaN методом функционала плотности. 2D -слой GaN моделировался суперъячейкой GaN (0001) 2×2 содержащих 10 бислоя GaN . Расчет электронной плотности состояния и энергии адсорбции атома Ba проводился для пяти мест адсорбции атома Ba : в ямочной позиции, в мостиковых позициях между поверхностными атомами Ga ( N ) и над поверхностным атомом Ga ( N ). Один атом Ba приходился на 4 поверхностных атомов Ga в первом бислое GaN . Наиболее предпочтительно адсорбция атома бария над поверхностным атомом N . Энергия адсорбции составляет величину: 2,96 эВ. Адсорбция атомов Ba приводит к незначительной реконструкции поверхности GaN : максимальный сдвиг слоя атомов Ga ( N ) не превышает 0,11 Å. Адсорбция Ba приводит к образованию поверхностной зоны ниже уровня Ферми.

Об авторах

Михаил Николаевич Лапушкин

Физико-технический институт им. А.Ф. Иоффе РАН

Email: lapushkin@ms.ioffe.ru
к.ф.-м.н., доцент по специальности, старший научный сотрудник

Список литературы

  1. Qian, X. Phonon-engineered extreme thermal conductivity materials / X. Qian, J. Zhou, G.Chen // Nature Materials. - 2021. - V. 20. - I. 9. - P. 1188-1202. doi: 10.1038/s41563-021-00918-3.
  2. Buffolo, M. Defects and reliability of GaN-based LEDs: review and perspectives / M. Buffolo, A. Caria, F. Piva et al. // Physica Status Solidi (a). - 2022. - V. 219. - I. 8. - Art № 2100727. - 22 p. doi: 10.1002/pssa.202100727.
  3. Emon, A.I. A review of high-speed GaN power modules: state of the art, challenges, and solutions / A.I. Emon, A.B. Mirza, J. Kaplun et al. // IEEE Journal of Emerging and Selected Topics in Power Electronics. - 2022. - V. 11. - I. 3. - P. 2707-2729. doi: 10.1109/JESTPE.2022.3232265.
  4. Sun, R. GaN power integration for high frequency and high efficiency power applications: a review / R. Sun, J. Lai, W. Chen, B. Zhang // IEEE Access. - 2020. - V. 8. - P. 15529-15542. doi: 10.1109/ACCESS.2020.2967027.
  5. Kozak, J.P. Stability, reliability, and robustness of GaN power devices: a review /j.P. Kozak, R. Zhang, M. Porter et al. // IEEE Transactions on Power Electronics. - 2023. - V. 38. - I. 7. - P. 8442-8471. doi: 10.1109/TPEL.2023.3266365.
  6. Zhang, Y. Recent advances on gan-based micro-leds / Y. Zhang, R. Xu, Q. Kang et al. // Micromachines. - 2023. - V. 14. - I. 5. - Art. № 991. - 19 p. doi: 10.3390/mi14050991.
  7. Behringer, M. Blue high-power laser diodes-beam sources for novel applications: overview and outlook / M. Behringer, H. König // PhotonicsViews. - 2020. - V. 17. - I. 2. - P. 60-63. doi: 10.1002/phvs.202000018.
  8. Bermudez, V.M. The fundamental surface science of wurtzite gallium nitride / V.M. Bermudez // Surface Science Reports. - 2017. - V. 72. - I. 4. - P. 147-315. doi: 10.1016/j.surfrep.2017.05.001.
  9. Northrup, J.E. Incorporation of beryllium on the clean and indium-terminated GaN (0001) surface /j.E. Northrup // Applied Physics Letters. - 2001. - V. 78. - I. 19. - P. 2855-2857. doi: 10.1063/1.1368369.
  10. Lyons, J.L. First-principles theory of acceptors in nitride semiconductors /j.L. Lyons, A. Alkauskas, A. Janotti, C.G. Van de Walle // Physica Status Solidi (b). - 2015. - V. 252. - I. 5. - P. 900-908. doi: 10.1016/j.cossms.2024.101148.
  11. Reshchikov, M.A. Photoluminescence from vacancy-containing defects in GaN / M.A. Reshchikov // Physica Status Solidi (a). - 2023. - V. 220. - I. 10. - Art. № 2200402. -8 p. doi: 10.1002/pssa.202200402.
  12. Sun, Q. Energetics of Mg incorporation at GaN (0001) and Ga N (000 ) surfaces / Q. Sun, A. Selloni, T.H. Myers et al. // Physical Review B. - 2006. - V. 73. - I. 15. - Art. № 155337. - 9 p. doi: 10.1103/PhysRevB.73.155337.
  13. Al Balushi, Z.Y. Two-dimensional gallium nitride realized via graphene encapsulation / Z.Y. Al Balushi, K. Wang, R. K. Ghosh et al. // Nature Materials. - 2016. - V. 15. - I. 11. - P. 1166-1171. doi: 10.1038/nmat4742.
  14. Cui, Z. Tuning the optoelectronic properties of graphene-like GaN via adsorption for enhanced optoelectronic applications / Z. Cui, X.Wang, M. Li et al. // Solid State Communications. - 2019. - V. 296. - P. 26-31. doi: 10.1016/j.ssc.2019.04.010.
  15. Бенеманская, Г.В. Модификация электронной структуры и формирование аккумуляционного слоя ультратонких интерфейсов Ва/n-GaN и Ba/n-AlGaN / Г. В. Бенеманская, С. Н. Тимошнев, С. В. Иванов и др. // Журнал экспериментальной и теоретической физики. - 2014. - Т. 145. - Вып. 4. - С. 684-696.
  16. Бенеманская, Г.В. Аккумуляционный зарядовый слой на поверхности n-GaN (0001) с ультратонкими Ва покрытиями / Г. В. Бенеманская, Г. Э. Франк-Каменецкая // Письма в Журнал экспериментальной и теоретической физики. - 2005. - Т. 81. - Вып. 10. - С. 642-645
  17. Hintze, F. Ba3Ga3N5: a novel host lattice for Eu2+-doped luminescent materials with unexpected nitridogallate substructure / F. Hintze, F. Hummel, P. J. Schmidt et al. // Chemistry of Materials. - 2012. - V. 24. - I. 2. - P. 402-407. doi: 10.1021/cm203323u.
  18. Giannozzi, P. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials / P. Giannozzi, S. Baroni, N. Bonini // Journal of Physics: Condensed Matter. - 2009. - V. 21. - №. 39. - Art. № 395502. - 19 p. doi: 10.1088/0953- 8984/21/39/395502.
  19. Perdew, J.P. Self-interaction correction to density-functional approximations for many-electron systems /j.P. Perdew, A. Zunger // Physical Review B. - 1981. - V. 23. - I. 10. - P. 5048-5079. doi: 10.1103/PhysRevB.23.5048.
  20. Nishihara, S. BURAI 1.3 A GUI of Quantum ESPRESSO / S. Nishihara. - Режим доступа: www.url: https://nisihara.wixsite.com/burai. - 16.07.2024.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).