CONTRIBUTION OF THE DISPERSION INTERACTION TO THE INTERFACE ENERGY OF COBALT CRYSTALS AT THE BOUNDARY WITH NONPOLAR ORGANIC LIQUIDS
- Authors: Apekov A.M1, Shebzukhova I.G.2
-
Affiliations:
- North-Caucasus Federal University
- Kabardino-Balkarian State University named after H.M. Berbekov
- Issue: No 15 (2023)
- Pages: 231-238
- Section: Theory of nanosystems
- URL: https://journal-vniispk.ru/2226-4442/article/view/378452
- DOI: https://doi.org/10.26456/pcascnn/2023.15.231
- EDN: https://elibrary.ru/ZLJMFQ
- ID: 378452
Cite item
Full Text
Abstract
The active implementation of devices based on the use of the properties of the metal-organic interface makes it important to study characteristics of such interfaces, especially of the metal-organic framework structures. The creation of these structures with the necessary properties is possible since one can vary the elemental composition in the active metal centers as well as the organic ligands binding these centers. In this regard, understanding the properties and nature of the interaction at the interface of a metal with organic substances becomes of primary interest. In this work, within the framework of the electron-statistical method, a correction to the interfacial energy of cobalt at the interface with non-polar organic liquids for the dispersion interaction of the Wigner-Seitz cells is obtained. The dependences of the dispersion correction on the orientation of the metal crystal and the permittivity of the organic liquid are determined. It is shown that the contribution of the dispersion correction to the interfacial energy is positive and decreases with an increase of the permittivity of the liquid.
About the authors
Aslan M Apekov
North-Caucasus Federal University
Email: aslkbsu@yandex.RUS
Stavropol, Russia
Irina G. Shebzukhova
Kabardino-Balkarian State University named after H.M. Berbekov
Email: irina.shebzukhova@mail.RUS
Nalchik, Russia
References
- Ryder, M.R. Nanoporous metal organic framework materials for smart applications / M.R. Ryder, J.-C. Tan // Materials Science and Technology. - 2014. - V. 30. - I. 13. - P. 1598-1612. doi: 10.1179/1743284714y.0000000550.
- Butova, V.V. Metal-organic frameworks: structure, properties, methods of synthesis and characterization / V.V. Butova, M.A. Soldatov, A.A. Guda et al. // Russian Chemical Reviews. - 2014. - V. 85. - № 3. - P. 280-307. doi: 10.1070/RCR4554.
- Li, J.-R. Selective gas adsorption and separation in metal-organic frameworks / J.-R. Li, R.J. Kuppler,H.-C. Zhou. // Chemical Society Reviews. - 2009. - V. 38. - I. 5. - P. 1477-1504. doi: 10.1039/B802426J.
- Qiu, S. Metal-organic framework membranes: from synthesis to separation application / S. Qiu, M. Xue, G. Zhu // Chemical Society Reviews. - 2014. - V. 43. - I. 16. - P. 6116-6140. doi: 10.1039/C4CS00159A.
- Rodenas, T. Metal-organic framework nanosheets in polymer composite materials for gas separation / T. Rodenas, I. Luz, G. Prieto et al. // Nature Materials. - 2015. - V. 14. - P. 48-55. doi: 10.1038/nmat4113.
- Britt, D. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites / D. Britt, H. Furukawa, B. Wang et al. // Proceedings of the National Academy of Sciences USA. - 2009.- V. 106. - I. 49. - P. 20637-20640. doi: 10.1073/pnas.0909718106.
- Pan, L. Separation of hydrocarbons with a microporous metal-organic framework / L. Pan, D.H. Olson, L.R. Ciemnolonski et al. // Angewandte Chemie International Edition. - 2006. - V. 45. - I. 4. - P. 616-619. doi: 10.1002/anie.200503503.
- Matsuda, R. Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer / R. Matsuda, T. Tsujino, H. Sato et al. // Chemical Science. - 2010. - V. 1. - I. 3. - P. 315-321. doi: 10.1039/C0SC00272K.
- Barea, E. Toxic gas removal - metal-organic frameworks for the capture and degradation of toxic gases and vapours / E. Barea, C. Montoro, J. Navarro // Chemical Society Reviews. - 2014. - V. 43. - I. 16. - P. 5419-5430. doi: 10.1039/c3cs60475f.
- Xiao, B. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework / B. Xiao, P.S. Wheatley, X. Zhao et al. // Journal of the American Chemical Society. - 2007. - V. 129. - I. 5.- P. 1203-1209. doi: 10.1021/ja066098k.
- Horcajada, P. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging / P. Horcajada, T. Chalati, C. Serre et al. // Nature Materials. - 2010. - V. 9. - P. 172-178. doi: 10.1038/nmat2608.
- Horcajada, P. Metal-organic frameworks in biomedicine / P. Horcajada, R. Gref, T. Baati et al. // Chemical Reviews. - 2012. - V. 112. - I. 2. - P. 1232-1268. doi: 10.1021/cr200256v.
- Bloch, E.D. Gradual release of strongly bound nitric oxide from Fe2(NO)2. / E.D. Bloch, W.L. Queen, S. Chavan et al. // Journal of the American Chemical Society. - 2015. - V. 137. - I. 10. - P. 3466-3469. doi: 10.1021/ja5132243.
- Imbert, D. Lanthanide 8-hydroxyquinoline-based podates with efficient emission in the NIR range / D. Imbert, S. Comby, A.-S. Chauvin, J.-C.G. Bunzli // Chemical communications. - 2005. - I. 11. - P. 1432-1434. doi: 10.1039/B416575F.
- Heine, J. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks / J. Heine, K. Muller-Buschbaum // Chemical Society Reviews. - 2013. - V. 42. - I. 24. - P. 9232-9242. doi: 10.1039/C3CS60232J.
- Hu, Z. Luminescent metal-organic frameworks for chemical sensing and explosive detection / Z. Hu, B.J. Deibert, J. Li // Chemical Society Reviews. - 2014. - V. 43. - I. 16. - P. 5815-5840. doi: 10.1039/c4cs00010b.
- Sato, H. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion/ H. Sato, R. Matsuda, K. Sugimoto et al. // Nature materials. - 2010. - V. 9. - P. 661-666. doi: 10.1038/nmat2808.
- Yutkin, M.P. Synthesis, structure and magnetic behavior of new 1D metal-organic coordination polymer with Fe3O core / M.P. Yutkin, M.S. Zavakhina, A.V. Virovets et al. // Inorganica Chimica Acta. - 2011.- V. 365. - I. 1. - P. 513-516. doi: 10.1016/j.ica.2010.10.015.
- Zhang, W. Ferroelectric metal-organic frameworks / W. Zhang, R.-G. Xiong // Chemical Reviews. - 2012. - V. 112. - I. 2. - P. 1163-1195. doi: 10.1021/cr200174w.
- Silva, C.G. Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation / C.G. Silva, I. Luz, F.X. Llabres i Xamena et al. // Chemistry A European Journal. - 2010. - V. 16.- I. 36. - P. 11133 -11138. doi: 10.1002/chem.200903526.
- Gabuda, S.P. Supramolecular interactions and structural transformations in the metal-organic sorbent-acetone nanoreactor system / S.P. Gabuda, S.G. Kozlova, D.N. Dybtsev, V.P. Fedin // Journal of Structural Chemistry. - 2009. - V. 50. - I. 5. - P. 887-894. doi: 10.1007/s10947-009-0132-x.
- Gabuda, S.P. Quantum rotations and chiral polarization of qubit prototype molecules in a highly porous metal-organic framework: 1H NMR T1 study / S.P. Gabuda, S.G. Kozlova, D.G. Samsonenko et al. // Journal of Physical Chemistry C. - 2011. - V. 115. - I. 42. - P. 20460-20465. doi: 10.1021/jp206725k.
- Xu, X. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries / X. Xu, R. Cao, S. Jeong, J. Cho // Nano Letters. - 2012. - V. 12. - I. 9. - P. 4988-4991. doi: 10.1021/nl302618s.
- Yang, S.J. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework / S.J. Yang, S. Nam, T. Kim et al. // Journal of the American Chemical Society. - 2013. - V. 135. - I. 20. - P. 7394-7397. doi: 10.1021/ja311550t.
- Meng, F.L. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors / F.L. Meng, Z.G. Fang, Z.X. Li et al. // Journal of Materials Chemistry A. - 2013. - V. 1. - I. 24. - P. 7235-7241. doi: 10.1039/C3TA11054K.
- Апеков, А.М. Ориентационная зависимость межфазной энергии низкотемпературной модификации титана на границе с органической жидкость / А.М. Апеков, И.Г. Шебзухова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - V. 14. - P. 17-23. doi: 10.26456/pcascnn/2022.14.017.
- Apekov, A.M. Interface energy of crystal faces of IIА-type metals at boundaries with nonpolar organic liquids, allowing for dispersion and polarization corrections / A.M. Apekov, I.G. Shebzukhova // Bulletin of Russian Academy of Science. Physics. - 2019. - V. 83. - I. 6. - P. 760-763. doi: 10.3103/S1062873819060078.
- Apekov, A.M. Polarization correction to the interfacial energy of faces of alkali metal crystals at the borders with a nonpolar organic liquid / A.M. Apekov, I.G. Shebzukhova // Bulletin of Russian Academy of Science. Physics. - 2018. - V. 82. - I. 7. - P. 789-792. doi: 10.3103/S1062873818070067.
- Апеков, А. М. Поляризационная и дисперсионная поправки к межфазной энергии граней кристаллов низкотемпературных модификаций кальция и бария на границе с неполярными органическими жидкостями / А. М. Апеков, И. Г. Шебзухова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2018. - № 10. - С. 20-26. - doi: 10.26456/pcascnn/2018.10.020. - EDN YUNWSL.
- Шебзухова, И. Г. Вклад дисперсионного взаимодействия s-сфер в межфазную энергию кристаллов а-Li и а-Na на границе с неполярными органическими жидкостями / И. Г. Шебзухова, А. М. Апеков // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2017. - № 9. - С. 518-521. - doi: 10.26456/pcascnn/2017.9.518. - EDN YMBXPE.
- Shebzukhova, I.G. Orientation dependence of the interfacial energies of chromium and α-iron crystals at boundaries with nonpolar organic liquids / I.G. Shebzukhova, A.M. Apekov, Kh.B. Khokonov // Bulletin of Russian Academy of Science. Physics. - 2017. - V. 81. - I. 5. - P. 605-607. doi: 10.3103/S1062873817050173.
- Shebzukhova, I.G. Anisotropy of the interface energy of IA and IB metals at a boundary with organic liquids / I.G. Shebzukhova, A.M. Apekov, Kh.B. Khokonov // Bulletin of Russian Academy of Science. Physics. - 2016. - V. 80. - I. 6. - P. 657-659. doi: 10.3103/S1062873816060307.
Supplementary files
