STUDY OF THE EFFECT OF THE RATIO OF EPOXY RESIN AND CURING AGENT COMONOMERS ON MECHANICAL PROPERTIES OF THE SYSTEM: MESOSCALE SIMULATION

Cover Page

Cite item

Full Text

Abstract

This publication continues the cycle of our work aimed at improving the methodology for constructing mesoscale models of network polymers and characterizing their physical properties. As the object of study, the epoxy resin of bisphenol A, diglycidyl ether, and a tricarboxylic fatty acid hardener was chosen. Its structure is the result of three parallel reactions. For their correct reproduction, an algorithm was proposed, which allows to take into account the peculiarities of the relationship of all ongoing processes. The system model was constructed by mapping the chemical structure of the monomers onto an equivalent mesoscale representation. It was used to study the relationship between the structure and mechanical properties of feeding networks as a function of the ratio of volume fractions of comonomers in the initial reaction mixture. All calculations were performed within the reaction version of the dissipative particle dynamics method. The structure of polymer networks in the constructed samples was characterized by topological analysis. The study of mechanical properties was carried out by constructing the "stress-strain" dependencies. The results obtained show a good correlation between the density of the load-bearing chains and the mechanical properties of the resulting networks. It is shown that the material samples with the highest degree of transformation and the density of the number of load-bearing chains have the highest stiffness.

About the authors

Pavel V. Komarov

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Email: pv_komarov@mail.RUS
Moscow, Russia)Tver State University (Tver, Russia

Maxim D. Malyshev

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Moscow, Russia)Tver State University (Tver, Russia

References

  1. Lutz, J.-F. From precision polymers to complex materials and systems / J.-F. Lutz, J.-M. Lehn, E.W. Meijer, K. Matyjaszewski // Nature Reviews Materials. - 2016. - V. 1. - I. 5. - P. 1-14. doi: 10.1038/natrevmats.2016.24.
  2. Kremer, K. Computer simulations for macromolecular science / K. Kremer // Macromolecular Chemistry and Physics. - 2003. - V. 204. - I. 2. - P. 257-264. doi: 10.1002/macp.200290079.
  3. Joshi, S.Y. A review of advancements in coarse-grained molecular dynamics simulations / S.Y. Joshi, S.A. Deshmukh // Molecular Simulation. - 2020. - V. 47. - I. 10-11. - P. 786-803. doi: 10.1080/08927022.2020.1828583.
  4. Gavrilov, A.A. Thermal properties and topology of epoxy networks: a multiscale simulation methodology / A.A. Gavrilov, P.V. Komarov, P.G. Khalatur // Macromolecules. - 2015. - V. 48. - I.1. - P. 206-212. doi: 10.1021/ma502220k.
  5. Komarov, P.V. Magnetoresponsive smart nanocomposites with highly cross-linked polymer matrix / P.V. Komarov, P.G. Khalatur, A.R. Khokhlov // Polymer for Advanced Technologies. - 2021. - V. 32. - I. 10. - P. 3922-3933. doi: 10.1002/pat.5354.
  6. Малышев, М. Д. Мезоскопическое моделирование витримера на основе диглицидилового эфира бисфенола А / М. Д. Малышев, П. В. Комаров // Вестник Тверского государственного университета. Серия: Химия. - 2021. - № 4(46). - С. 105-117. - doi: 10.26456/vtchem2021.4.13. - EDN VOLLBB.
  7. Комаров, П. В. Изучение процесса сварки материала на основе витримера: мезомасштабное моделирование / П. В. Комаров, М. Д. Малышев // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - № 14. - С. 435-449. - doi: 10.26456/pcascnn/2022.14.435. - EDN JJGHRJ.
  8. Capelot, M. Catalytic control of the vitrimer glass transition / M. Capelot, M.M. Unterlass, F. Tournilhac, L. Leibler // ACS Macro Letters. - 2012. - V. 1. - I. 7. - P. 789-792. doi: 10.1021/mz300239f.
  9. Capelot, M. Metal-catalyzed transesterification for healing and assembling of thermosets / M. Capelot, D. Montarnal, F. Tournilhac, L. Leibler // Journal of the American Chemical Society. - 2012. - V. 134. - I. 18. - P. 7664-7667. doi: 10.1021/ja302894k.
  10. Groot, R.D. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation / R.D. Groot, P.B. Warren // The Journal of Chemical Physics. - 1997. - V. 107. - I. 11. - P. 4423-4435. doi: 10.1063/1.474784.
  11. Demongeot, A. Coordination and catalysis of Zn2+ in epoxy-based vitrimers / A. Demongeot, S.J. Mougnier, S. Okada et al. // Polymer Chemistry. - 2016. - V. 7. - I. 27. - P. 4486-4493. doi: 10.1039/C6PY00752J.
  12. Antonietti, M. Promises and problems of mesoscale materials chemistry or why meso? / M. Antonietti, G.A. Ozin // Chemistry: A European Journal. - 2004. - V. 10. - I. 1. - P. 28-41. doi: 10.1002/chem.200305009.
  13. Kriksin, Y.A. Directed assembly of block copolymers by sparsely patterned substrates / Y.A. Kriksin, P.G. Khalatur, I.V. Neratova et al. // Journal of Physical Chemistry C. - 2011. - V. 115. - I. 51. - P. 25185-25200. doi: 10.1021/JP204629K.
  14. Gavrilov, A.A. Effect of nanotube size on the mechanical properties of elastomeric composites / A.A. Gavrilov, A.V. Chertovich, P.G. Khalatur, A.R. Khokhlov // Soft Matter. - 2013. - V. 9. - I. 15. - P. 4067-4072. doi: 10.1039/c3sm27281h.
  15. Sadovnichy, V. "Lomonosov": Supercomputing at Moscow state university / V. Sadovnichy, A. Tikhonravov, V. Voevodin, V. Opanasenko // In book: Contemporary high performance computing: from petascale toward exascale; ed. by J.S. Vetter. - London: CRC Press, 2013. - Ch. 2. - P. 283-307. doi: 10.1201/9781351036863.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).