SCENARIOS OF STRUCTURE FORMATION IN TERNARY NANOPARTICLES BASED ON Pd-Pt IN THE PRESENCE OF Ni DOPANT

Cover Page

Cite item

Full Text

Abstract

In this work, scenarios of structure formation in ternary nanoparticles based on platinum and palladium of four stoichiometric compositions of different sizes were studied, with nickel acting as a dopant. Two alternative methods were used: the molecular dynamics method (implemented in the open source software LAMMPS) and the Monte Carlo method (implemented in the Metropolis scheme). In addition, to describe the interatomic interaction, two versions of force fields were used: the modified tight-binding potential (when implementing the molecular dynamics and Monte Carlo methods) and the embedded atom potential (when implementing the molecular dynamics method). Based on the results of a series of computer experiments, it was found that palladium atoms have increased segregation to the surface. At a cooling rate of 0,1 K/ps, an ordered crystalline FCC structure with inclusions of the HCP phase is formed. With an increase in the nickel dopant content to 20% in the ternary Pd-Pt-Ni nanoparticle, the identifiable local structure becomes more complex, both in terms of the number of phases and in terms of structural segregation.

About the authors

Nikita I. Nepsha

Tver State University

Tver, Russia

Denis N. Sokolov

Tver State University

Tver, Russia

Egor S. Mitinev

Tver State University

Tver, Russia

Anton A. Taktarov

Tver State University

Tver, Russia

Nickolay Yu. Sdobnyakov

Tver State University

Email: nsdobnyakov@mail.RUS
Tver, Russia

References

  1. Ершов, П.М. Исследование размерных зависимостей температур плавления и кристаллизации и удельной избыточной поверхностной энергии наночастиц никеля вблизи фазового перехода плавление/кристаллизация / П.М. Ершов, А.Ю. Колосов, В.С. Мясниченко и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2018. - Вып. 10. - С. 242-251. doi: 10.26456/pcascnn/2018.10.242.
  2. Васильев, С.А. Изучение размерных зависимостей теплот плавления и кристаллизации нанокластеров платины и палладия методом молекулярной динамики / C.А. Васильев, А.А. Романов, Н.В. Востров и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2019. - Вып. 11.- С. 436-442. doi: 10.26456/pcascnn/2019.11.436.
  3. Leteba, G. High-index core-shell Ni-Pt nanoparticles as oxygen reduction electrocatalysts / G. Leteba, D. Mitchell, P. Levecque et al. // ACS Applied Nano Materials. - 2020. - V. 3. - I. 6. - P. 5718-5731. doi: 10.1021/acsanm.0c00915.
  4. Wang, Q. Hollow-structure Pt-Ni nanoparticle electrocatalysts for oxygen reduction reaction / Q. Wang, B. Mi, J. Zhou et al. // Molecules. - 2022. - V. 27. - I. 8. - Art. № 2524. - 11 p. doi: 10.3390/molecules27082524.
  5. Zhang, S. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction / S. Zhang, Y. Hao, D. Su et al. // Journal of the American Chemical Society. - 2014. - V. 136. - I. 45.- P. 15921-15924. doi: 10.1021/ja5099066.
  6. Park, K.W. Chemical and Electronic Effects of Ni in Pt/Ni and Pt/RUS/Ni Alloy Nanoparticles in Methanol Electrooxidation / K.W. Park, J.H. Choi, B.K. Kwon et al. // The Journal of Physical Chemistry B. - 2002.- V. 106. - I. 8. - P. 1869-1877. doi: 10.1021/jp013168v.
  7. Xia, J. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions / J. Xia, Y. Fu, G. He et al. // Applied Catalysis B: Environmental.- 2017. - V. 200. - P. 39-46. doi: 10.1016/j.apcatb.2016.06.066.
  8. Umar, A. Synthesis and characterization of Pd-Ni bimetallic nanoparticles as efficient adsorbent for the removal of acid orange 8 present in wastewater / A Umar, M.S. Khan, S. Alam et al. // Water. - 2021. - V. 13.- I. 8. - Art. № 1095. - 17 p. doi: 10.3390/w13081095.
  9. Xu, Y. Element segregation and thermal stability of Ni-Pd nanoparticles / Y. Xu, G. Wang, P. Qian // Journal of Materials Science. - 2022. - V. 57. - I. 14. - P. 7384-7399. doi: 10.1007/s10853-022-07118-7.
  10. Samsonov, V.M. On the problem of stability/instability of bimetallic core-shell nanostructures: Molecular dynamics and thermodynamic simulations / V.M. Samsonov, I.V. Talyzin, A.Yu. Kartoshkin et al. // Computational Materials Science. - 2021. - V.199. - Art. № 110710. - 11 p. doi: 10.1016/j.commatsci.2021.110710.
  11. Divi, S. Understanding segregation behavior in AuPt, NiPt, and AgAu bimetallic nanoparticles using distribution coefficients / S. Divi, A. Chatterjee // The Journal of Physical Chemistry C. - 2016. - V. 120.- I. 48. - P. 27296-27306. doi: 10.1021/acs.jpcc.6b08325.
  12. Sneed, B.T. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations / B.T. Sneed, A.P. Young, D. Jalalpoor et al. // ACS Nano. - 2014. - V. 8. - I. 7.- P. 7239-7250. doi: 10.1021/nn502259g.
  13. Luo, Y. Ultra-small nanoparticles of Pd-Pt-Ni alloy octahedra with high lattice strain for efficient oxygen reduction reaction / Y. Luo, W. Lou, H. Feng et al. // Catalysts. - 2023. - V. 13. - I. 1. - Art. № 97. - 17 p. doi: 10.3390/catal13010097.
  14. Guo, J. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction / J. Guo, M. Zhang, J. Xu et al. // The Royal Society of Chemistry. - 2022.- V. 12. - I. 4. - P. 2246-2252. doi: 10.1039/D1RA07998K.
  15. Atomsk. - Режим доступа: www.url: https://atomsk.univ-lille.fr. - 05.08.2023.
  16. LAMMPS Molecular Dynamics Simulator. - Режим доступа: www.url: http://lammps.sandia.gov.- 15.08.2023.
  17. Свидетельство № 2019661915 Российская Федерация. Metropolis / Д.Н. Соколов, Н.Ю. Сдобняков, А.Ю. Колосов, П.М. Ершов, С.С. Богданов; заявитель и правообладатель ФГБОУ ВО "Тверской государственный университет". - № 2019660847; заявл. 30.08.2019; зарегистрировано в реестре программ для ЭВМ 11.09.2019. - 1 с.
  18. Metropolis, N. The Monte Carlo method / N. Metropolis, S. Ulam // Journal of the American Statistical Association. - 1949. - V. 44. - I. 247. - P. 335-341. doi: 10.2307/2280232.
  19. Zhoe, X.W. Misfit-energy dislocations in vapor-deposited CoFe/NiFe multilayers / X.W. Zhoe, R.A. Johson, N.G. Wadley // Physical Review B. - 2004. - V. 69. - I. 14. - P. 144113-1-144113-10. doi: 10.1103/PhysRevB.69.144113.
  20. Cleri, F. Tight-binding potentials for transition metals and alloys / F. Cleri, V. Rosato // Physical Review B.- 1993. - V. 48. - I. 1. - Р. 22-33. doi: 10.1103/PhysRevB.48.22.
  21. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO - the open visualization tool / A. Stukowski // Modelling and Simulation in Materials Science and Engineering. - 2010. - V. 18. - I. 1.- P. 015012-1-015012-7. doi: 10.1088/0965-0393/18/1/015012.
  22. OVITO Open Visualization Tool. - Режим доступа: www.url: http://www.ovito.org. - 25.08.2023.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).