PHASE COMPOSITION AND BIOCOMPATIBILITY OF CALCIUM PHOSPHATE COATINGS ON TITANIUM ENRICHED WITH HYDROXYAPATITE

Cover Page

Cite item

Full Text

Abstract

Calcium phosphate coatings containing brushite, calcite, and apatite were obtained by electrochemical deposition on titanium plates at room temperature, pH 5, constant current density 30 mA/cm2, from CaCO3/Ca(H2PO4)2 suspension electrolyte. A layer of amorphous apatite was deposited by the biomimetic method, by keeping the coatings in a concentrated modeling solution of Simulated Body Fluid. As a result of heat treatment at 800°C, apatite crystallized into hydroxyapatite, calcite decomposed to calcium oxide, and titanium was covered with a layer of titanium (IV) oxide. Preclinical studies on rats in vivo for 3 months showed increased osseointegration of plates with calcium phosphate coatings compared to uncoated titanium. Titanium implants with calcium phosphate coatings enriched with hydroxyapatite are promising for use in neurosurgery, dentistry, orthopedics due to the absence of inflammatory reactions from the body and increased osseointegration.

About the authors

Anna E. Doroshenko

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Email: doroshenko@igic.bas-net.by
Minsk, Republic of Belarus

Valentina K. Krut'ko

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Republic of Belarus

Olga N. Musskaya

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Republic of Belarus

Andrey I. Dovnar

Grodno State Medical University

Grodno, Republic of Belarus

Oksana B. Ostrovskaya

Grodno State Medical University

Grodno, Republic of Belarus

Evgeni M. Doroshenko

Grodno State Medical University

Grodno, Republic of Belarus

Anatoly I. Kulak

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Republic of Belarus

References

  1. Williams, D.F. Titanium for medical applications / D.F. Williams // In: Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications; ed. by D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen. - Berlin, New York: Springer, 2001. - Ch. 1. - P. 13-24.
  2. Zhang, L.C. A review on biomedical titanium alloys: recent progress and prospect / L.C. Zhang, L.Y. Chen // Advanced Engineering Materials. - 2019. - V.21. - I. 4. - P. 1-29. doi: 10.1002/adem.201801215.
  3. Eliaz, N. Corrosion of metallic biomaterials: a Review / N. Eliaz // Materials. - 2019. - V. 12. - I. 3.- Art. № 407. - 91 p. doi: 10.3390/ma12030407.
  4. Zhang, L.C. Surface modification of titanium and titanium alloys: technologies, developments, and future interests / L.C. Zhang, L.Y. Chen, L. Wang // Advanced Engineering Materials. - 2020. - V. 22. - I. 5.- Art. № 1901258. - 37 p. doi: 10.1002/adem.201901258.
  5. Bochetta, P. Passive layers and corrosion resistance of biomedical Ti-6Al-4V and β-Ti Alloys / P. Bochetta, L.Y. Chen, J.D. Corpa Tardell et al. // Coatings. - 2021. - V. 11. - I. 5. - Art. № 487. 32 p. doi: 10.3390/coatings11050487.
  6. Asri, R.I.M. Corrosion and surface modification on biocompatible metals: a review / R.I.M. Asri, W.S.W Harun, M. Samykano, et al. // Materials Science and Engineering: C. - 2017. - V. 77. - P. 1261-1274. doi: 10.1016/j.msec.2017.04.102.
  7. Milošev, I. XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank's physiological solution / I. Milošev, T. Kosec, H.H. Strehblow // Electrochimica Acta. - 2008. - V. 53. - I. 9.- P. 3547-3558. doi: 10.1016/j.electacta.2007.12.041.
  8. Gao, A. Electrochemical surface engineering of titanium-based alloys for biomedical application / A. Gao, R. Hang, L. Bai et al. // Electrochimica Acta. - 2018. - V. 271. - P. 699-718. doi: 10.1016/j.electacta.2018.03.180
  9. Chen, Q. Metallic implant biomaterials / Q. Chen, G.A. Thouas // Materials Science and Engineering: R: Reports. - 2015. - V. 87. - P. 1-57. doi: 10.1016/j.mser.2014.10.001.
  10. Dorozhkin, S.V. Calcium orthophosphate deposits: preparation, properties and biomedical applications / S.V. Dorozhkin // Materials Science and Engineering: C. - 2015. - V. 55. - P. 272-326. doi: 10.1016/j.msec.2015.05.033.
  11. Tang, Z. The material and biological characteristics of osteoinductive calcium phosphate ceramics / Z. Tang, X. Li, Y. Tan, Y. et al. // Regenerative Biomaterials. - 2018. - V. 5. - I. 1. - P. 43-59. doi: 10.1093/rb/rbx024.
  12. Xiao, D. The role of calcium phosphate surface structure inosteogenesis and the mechanisms involved / D. Xiao, J. Zhang, C. Zhang et al. // Acta Biomaterialia. - 2020. - V. 106. - P. 22-33. doi: 10.1016/j.actbio.2019.12.034.
  13. Habraken, W. Calcium phosphates in biomedical applications: materials for the future? / W. Habraken, P. Habibovic, M. Epple, M. Bohner // Mater. Today. - 2016. - V. 19. - I. 2. - P. 76-87. doi: 10.1016/j.mattod.2015.10.008.
  14. Eliaz, N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications / N. Eliaz, N. Metoki // Materials. - 2017. - V. 10. - I. 4.- Art. № 334. - 104 p. doi: 10.3390/ma10040334.
  15. Wang, H. Early bone apposition in vivo on plasma-spryed and electrochemically deposited hydroxyapatite on titanium alloy / H. Wang, N. Eliaz, Z. Xiang et al. // Biomaterials. - 2006. - V. 27. - I. 23. - P. 4192-4203. doi: 10.1016/j.biomaterials.2006.03.034.
  16. Heimann, R. Osseoconductive and corrosion-inhibiting plasma-sprayed calcium phosphate coatings for metallic medical implants / R. Heimann // Metals. - 2017. - V. 7. - I. 11. - P. 468-487. doi: 10.3390/met7110468.
  17. Kreller, T. Biomimetic calcium phosphate coatings for bioactivation of titanium iImplant surfaces: methodological approach and in vitro evaluation of biocompatibility / T. Kreller, F. Sahm, R. Bader et al. // Materials. - 2021. - V. 14. - I. 13. - Art. № 3516. - 18 p. doi: 10.3390/ma14133516.
  18. Li, T.T. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. / T.T. Li, L. Ling, M.C. Lin et al. // Journal of Materials Science. - 2020. - V. 55. - I. 15. - P. 6352-6374. doi: 10.1007/s10853-020-04467-z.
  19. Drevet, R. Electrodeposition of calcium phosphate coatings on metallic substrates for bone implant applications: a review / R. Drevet, H. Benhayoune // Coatings. - 2022. - V. 12. - I. 4. - Art. № 539. - 24 p. doi: 10.3390/coatings12040539.
  20. Wang, M.C. Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dehydrate (DCPD) / M.C. Wang, H.T. Chen, W.J. Shih et al. // Ceramics International. - 2015. - V. 41. - I. 2. - Part B. - P. 2999-3008. doi: 10.1016/j.ceramint.2014.10.135.
  21. Drevet, R. Structural and morphological study of electrodeposited calcium phosphate materials submitted to thermal treatment / R. Drevet, J. Fauré, H. Benhayoune // Materials Letters. - 2017. - V. 209. - P. 27-31. doi: 10.1016/j.matlet.2017.07.101.
  22. Крутько, В.К. Формирование апатитов на электроосажденных кальцийфосфатах в системах Ca(NO3)2/NH4H2PO4 и CaCO3/Ca(H2PO4)2 / В.К. Крутько, А.Е. Дорошенко, О.Н. Мусская и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - Вып. 13. - С. 860-869. doi: 10.26456/pcascnn/2021.13.860.
  23. Kokubo, T. Simulated body fluid (SBF) as a standard tool to test the bioactivity of Implants / T. Kokubo, H. Takadama // In: Handbook of Biomineralization: biological aspects and structure formation; ed. by E. Epple, E. Bäuerlein. - Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2007. - Ch. 7. - P. 97-109. doi: 10.1002/9783527619443.ch51.
  24. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). - Режим доступа: www.url: https://www.icdd.com/pdf-2. - 15.06.2023.
  25. Волкова, О.В. Основы гистологии с гистологической техникой / О.В. Волкова, Ю.К. Елецкий. - М.: Медицина, 1982. - 304 с.
  26. Крутько, В.К. Получение октакальцийфосфата в водной среде при взаимодействии кальцита с монокальцийфосфатом моногидратом / В.К. Крутько, А.Е. Дорошенко, О.Н. Мусская, А.И. Кулак // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14.- С. 782-790. doi: 10.26456/pcascnn/2022.14.782.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).