CROSS EFFECT OF ISOPROPANOL AND ETHANOL VAPOR ON THE RESPONSE OF A SEMICONDUCTOR GAS SENSOR

Cover Page

Cite item

Full Text

Abstract

The temperature dependencies of the response of Cu:SnO 2 films to ethanol, 2-propanol vapours, as well as ethanol with 3% vol. background impurities of 2-prophanol in the working temperature range of 250-375°C. The aim of the study was to determine the effect of the 2-propanol background impurities on the sensor response to ethanol, as well as to assess the possibility of distinguishing a steam-air mixture containing pure ethanol vapors from a gas mixture of ethanol/2-propanole by means of single-sensor signal statistical processing. The temperature dependencies analysis of the sensor response showed that the temperature at which the maximum response is observed is individual for each substance. A selective response to substances was detected. It was found that the 3% vol. isopropyl alcohol compound decreases the response to ethanol in the tested concentration and temperature range. Statistical processing of experimental data by the principal component analysis (PCA) and cross-validation of the model by the ellipsoid and nearest-neighbor showed the fundamental ability to recognize ethanol, 2-propanol and their mixture.

About the authors

Nikita A. Klychkov

Saratov State University

Email: nklychkov@mail.RUS
Saratov, Russia

Viacheslav V. Simakov

Saratov State University

Saratov, Russia

Vera V. Efanova

Samara State Transport University

Ilya V. Sinev

Saratov State University

Saratov, Russia

References

  1. Wang, C. Metal oxide gas sensors: sensitivity and influencing factors / C. Wang, L. Yin, L. Zhang et al. // Sensors. - 2010. - V. 10. - I. 3. - P. 2088-2106. doi: 10.3390/s100302088.
  2. Kissine, V.V. A comparative study of SnO2 and SnO2:Cu thin films for gas sensor applications / V.V. Kissine, S.A. Voroshilov, V.V. Sysoev // Thin Solid Films. - 1999. - V. 348. - I. 1-2. - P. 304-311. doi: 10.1016/S0040-6090(99)00057-7.
  3. Na, H.B. A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton / H.B. Na, X.F.Zhang, M. Zhang et al. // Sensors and Actuators B: Chemical. - 2019. - V. 297. - Art. № 126816. - 11 p. doi: 10.1016/j.snb.2019.126816.
  4. Meng, X. Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles / X. Meng, M. Bi, Q. Xiao, W. Gao // International Journal of Hydrogen Energy. - 2022. - V. 47. - I. 5.- P. 3157-3169. doi: 10.1016/j.ijhydene.2021.10.201.
  5. Sharma, B. Sputtered SnO2/ZnO heterostructures for improved NO2 gas sensing properties / B. Sharma, A. Sharma, M. Joshi, J.H. Myung // Chemosensors. - 2020. - V. 8. - I. 3. - Art. № 67. - 8 p. doi: 10.3390/chemosensors8030067.
  6. Zhou, Q. High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks / Q. Zhou, W. Zeng, W. Chen, L. Xu // Sensors and Actuators B: Chemical. - 2019.- V. 298. - Art. № 126870. - 7 p. doi: 10.1016/j.snb.2019.126870.
  7. Тимошенко, Д.А. Распознавание газовоздушных смесей с помощью одиночного сенсора газа на основе нитевидных нанокристаллов диоксида олова / Д.А. Тимошенко, И.В. Синев, В.В. Симаков, Н.А. Клычков // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов.- 2021. - Вып. 13. - С. 796-801. doi: 10.26456/pcascnn/2021.13.796.
  8. Aziz, M. Size-controlled synthesis of SnO2 nanoparticles by sol-gel method / M. Aziz, S.S. Abbas, W.R.W. Baharom // Materials Letters. - 2013. - V. 91. - P. 31-34. doi: 10.1016/j.matlet.2012.09.079.
  9. Kumar, A. RF sputtered CuO anchored SnO2 for H2S gas sensor / A. Kumar, A.K. Shringi, M. Kumar // Sensors and Actuators B: Chemical. - 2022. - V. 370. - Art. № 132417. - 7 p. doi: 10.1016/j.snb.2022.132417.
  10. Sun, P. Hierarchical α-Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties / P. Sun, Y. Cai, S. Du et al. // Sensors and Actuators B: Chemical. - 2013. - V. 182. - P. 336-343. doi: 10.1016/j.snb.2013.03.019.
  11. Khan, A.F. Effect of annealing on electrical resistivity of rf-magnetron sputtered nanostructured SnO2 thin films / A.F. Khan, M. Mehmood, A.M. Rana, M.T. Bhatti // Applied Surface Science. - 2009. - V. 255. - I. 20. - P. 8562-8565. doi: 10.1016/j.apsusc.2009.06.020.
  12. Rembeza, E.S. Influence of laser and isothermal treatments on microstructural properties of SnO2 films / E.S. Rembeza, O. Richard, J. Van Landuyt // Materials Research Bulletin. - 1999. - V. 34. - I. 10-11.- P. 1527-1533. doi: 10.1016/S0025-5408(99)00188-9.
  13. van den Broek, J. Highly selective detection of methanol over ethanol by a handheld gas sensor / J. van den Broek, S. Abegg, S.E. Pratsinis, A.T. Güntner // Nature Communication. - 2019. - V. 10. - Art. № 4220.- 8 p. doi: 10.1038/s41467-019-12223-4.
  14. Синёв, И.В. Влияние освещения на распознавательную способность мультисенсорных микросистем на основе нитевидных нанокристаллов диоксида олова / И.В. Синев, Н.А. Клычков, Д.А. Тимошенко, В.В. Симаков // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов.- 2020. - Вып. 12. - С. 713-721. doi: 10.26456/pcascnn/2020.12.713.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).