FORMATION OF BIOMIMETIC APATITE ON CALCIUM PHOSPHATE FOAM CERAMICS IN STANDARD AND CARBONATE-FREE MODEL SOLUTIONS

Cover Page

Cite item

Full Text

Abstract

The biomimetic apatite was formed in the carbonate-free Simulated Body Fluid model solutions of standard composition on calcium phosphate foam ceramics, consisting of α/β -tricalcium phosphate and β -calcium pyrophosphate. The apatite phase composition was determined by the composition of Simulated Body Fluid solution used during soaking. The equilibrium shift in the model solution during the interaction of calcium phosphate foam ceramics with ions of the solution leads to the apatite precipitation in the aggregated particles form. The excess content of H+ ions in carbonate-free Simulated Body Fluid leads to pH sharp fluctuations and the inclusion of hydrated СaClH2PO4 impurity into apatite spherulites. An increase in the soaking time in Simulated Body Fluid model solutions to 21-28 days leads to coarsening of apatite spherulites to 5-6 µm. The foam ceramics surface morphology after soaking changes insignificantly with a slight decrease in the through porosity by 1-3% and two times increase in static strength due to the healing of microdefects in the foam ceramics structure.

About the authors

Valentina K. Krut'ko

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Email: tsuber@igic.bas-net.by
Minsk, Republic of Belarus

Lyubov Yu. Maslova

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Republic of Belarus

Olga N. Musskaya

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Republic of Belarus

Anatoly I. Kulak

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Republic of Belarus

References

  1. Samavedi, S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior / S. Samavedi, A.R. Whittington, A.S. Goldstein // Acta Biomaterialia. - 2013. - V. 9. - I. 9. - P. 8037-8045. doi: 10.1016/j.actbio.2013.06.014.
  2. Montufar, E.B. Calcium phosphate foams: potential scaffolds for bone tissue modeling in three dimension / E.B. Montufar, L. Vojtova, L. Celko et al. // 3D Cell Culture. Methods in Molecular Biology. - New York: Humana Press, 2017. - V. 1612. - P. 79-94. doi: 10.1007/978-1-4939-7021-6_6.
  3. Крутько, В.К. Кальцийфосфатная пенокерамика, полученная обжигом порошковой смеси гидроксиапатит-монокальцийфосфат моногидрат / В.К. Крутько, Л.Ю. Маслова, О.Н. Мусская и др. // Стекло и керамика. - 2021. - Вып. 12. - С. 15-21.
  4. Barba, A. Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture / A. Barba, A. Diez-Escudero, Y. Maazouz et al. // ACS Applied Materials & Interfaces.- 2017. - V. 9. - I. 48. - P. 41722-41736. doi: 10.1021/acsami.7b14175.
  5. Wang, J. Fabrication and preliminary biological evaluation of a highly porous biphasic calcium phosphate scaffold with nano-hydroxyapatite surface coating / J. Wang, Y. Zhu, M. Wang et al. // Ceramics International.- 2018. - V. 44. - I. 2. - P. 1304-1311. doi: 10.1016/j.ceramint.2017.08.053.
  6. Hou, X. Calcium phosphate-based biomaterials for bone repair / X. Hou, L. Zhang, Z. Zhou et al. // Journal of Functional Biomaterials. - 2022. - V. 13. - I. 9. - P. 187-226. doi: 10.3390/jfb130401872.
  7. Bejarano, J. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics / J. Bejarano, P. Caviedes, H. Palza // Biomedical Materials. - 2015. - V. 10. - I. 2.- Art. № 025001. - 13 p. doi: 10.1088/1748-6041/10/2/025001.
  8. Dee, P. Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair / P. Dee, H.Y. You, S.H. Teoh et al. // Journal of the Mechanical Behavior of Biomedical Materials. - 2020. - V. 112.- Art. ID 104078. - 15 p. doi: 10.1016/j.jmbbm.2020.104078.
  9. Bouler, J.M. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response / J.M. Bouler, P. Pilet, O. Gauthier et al. // Acta Biomaterialia. - 2017. - V. 53. - P. 1-12. doi: 10.1016/j.actbio.2017.01.076.
  10. Tavoni, M. Bioactive calcium phosphate-based composites for bone regeneration / M. Tavoni, M. Dapporto, A. Tampieri et al. // Journal of Composites Science. - 2021. - V. 5. - I. 9. - P. 227-254. doi: 10.3390/jcs5090227.
  11. Hench, L.L. Bioceramics / L.L. Hench // Journal of the American Ceramic Society. - 1998. - V. 81. - I. 7.- P. 1705-1728. doi: 10.1111/j.1151-2916.1998.tb02540.x.
  12. Kokubo, T. Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W / T. Kokubo, H. Kushitani, S. Sakka et al. // Journal of Biomedical Materials Research. - 1990. - I. 24. - P. 721-734. doi: 10.1002/jbm.820240607.
  13. Dridi, A. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37°C / A. Dridi, K. Zlaoui Riahi, S. Somrani // Journal of Physics and Chemistry of Solids.- 2021. - V. 156. - Art. № 110122. - 14 p. doi: 10.1016/j.jpcs.2021.110122.
  14. Takadama, H. Round-robin test of SBF for in vitro measurement of apatite-forming ability of synthetic materials / H. Takadama, M. Hashimoto, M. Mizuno et al. // Phosphorus Research Bulletin. - 2004. - V. 17.- P. 119-125. doi: 10.3363/prb1992.17.0_119.
  15. Крутько, В.К. Влияние фазы трикальцийфосфата на прочность гидроксиапатитовой пенокерамики в процессе термического отжига / В.К. Крутько, O.Н. Мусская, A.И. Кулак и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2017. - Вып. 9. - С. 264-270. doi: 10.26456/pcascnn/2017.9.264.
  16. Крутько, В.К. Термическая эволюция кальцийфосфатной пенокерамики, полученной на основе гидроксиапатита и монокальцийфосфата моногидрата / В.К. Крутько, О.Н. Мусская, А.И. Кулак и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2019. - Вып. 11.- С. 615-623. doi: 10.26456/pcascnn/2019.11.615.
  17. Крутько, В.К. Кальцийфосфатная пенокерамика на основе порошковой смеси гидроксиапатит-брушит / В.К. Крутько, О.Н. Мусская, А.И. Кулак и др. // Стекло и керамика. - 2019. - Вып. 7. - С. 38-44.
  18. Крутько, В.К. Биоактивная кальцийфосфатная пенокерамика, модифицированная биомиметическим апатитом / В.К. Крутько, Л.Ю. Маслова, О.Н. Мусская и др. // Известия Национальной академии наук Беларуси. Серия химических наук. - 2022. - Т. 58. - Вып. 2. - С. 158-168. doi: 10.29235/1561-8331-2022-58-2-158-168.
  19. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). - Режим доступа: www.url: https://www.icdd.com/pdf-2. - 28.06.2023.
  20. Oyane, A. Clustering of calcium phosphate in SBF and in the system CaCl2-H3PO4-KCl-H2O / A. Oyane, K. Onuma, A. Ito et al. // Bioceramics. Proceedings of the 12th International Symposium on Ceramics in Medicine, Nara City, Japan, 8-11 October 1999. - 1999. - V. 12. - P. 157-160. doi: 10.1142/9789814291064_0038.
  21. Muller, L. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites / L. Muller, F.A. Muller // Acta Biomaterialia. - 2006. - V. 2. - I. 2. - P. 181-189. doi: 10.1016/j.actbio.2005.11.001.
  22. Liu, Y. PAT for reactive crystallization process optimization for phosphorus recovery from sewage sludge / Y. Liu, H. Qu // Computer Aided Chemical Engineering, 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering: Parts A, B and C; ed. by K.V. Gernaey, J.K. Huusom, R. Gani. - 2015. - V. 37. - P. 1571-1575. doi: 10.1016/B978-0-444-63577-8.50107-8.
  23. Piga, G. β-Tricalcium phosphate interferes with the assessment of crystallinity in burned skeletal remains / G. Piga, A. Amarante, C. Makhoul et al. // Journal of Spectroscopy. - 2018. - V. 2018. - Art. no. 5954146.- 10 p. doi: 10.1155/2018/5954146.
  24. Ryu, H.-S. An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate / H.-S. Ryu, H.-J. Youn, K.S. Hong et al. // Biomaterials. - 2002. - V. 23. - I. 3. - P. 909-914. doi: 10.1016/s0142-9612(01)00201-0.
  25. Bucur, A.I. Thermal analysis and high-temperature X-ray diffraction of nano-tricalcium phosphate crystallization / A.I. Bucur, R. Bucur, T. Vlase et al. // Journal of Thermal Analysis and Calorimetry. - 2012.- V. 107. I. - 1. - Р. 249-255. doi: 10.1007/s10973-011-1753-9.
  26. Гайдаш, А.А. Структура и физико-химические свойства коллагеновых гелей, обработанных гиалуроновой кислотой / А.А. Гайдаш, В.К. Крутько, О.Н. Мусская и др. // Журнал прикладной химии.- 2022. - Т. 95. - Вып. 11. - С. 21-35. doi: 10.1134/S1070427222110039.
  27. Глазов, И.Е. Низкотемпературное формирование и идентификация двухфазных карбонат-фосфатов кальция / И.Е. Глазов, В.К. Крутько, О.Н. Мусская и др. // Журнал неорганической химии. - 2022.- Т. 67. - Вып. 11. - С. 1541-1553. doi: 10.31857/S0044457X22600876.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).