Chemical modification of functional copolymers

Cover Page

Cite item

Full Text

Abstract

The possibility of chemical modification of thermally-stable functional copolymers of 1-vinyl-1,2,4-triazole with vinyl acetate of various compositions synthesized under conditions of free-radical polymerisation in the presence of azobisisobutyronitrile was studied. Modification of the copolymers was carried out by alkaline hydrolysis; as a result, new copolymers containing vinyl triazole and vinyl alcohol units in the macromolecules were obtained. The structure, composition, physical and chemical properties of the copolymers were determined using elemental analysis, infrared spectroscopy and thermogravimetric analysis. With an increase in the number of vinyl alcohol units in the copolymer from 25 to 87 mol %, a nearly twofold reduction in the intrinsic viscosity of the copolymers was observed. The copolymers, which exhibit dielectric properties, are characterised by electrical conductivity of the order of Ш14-10-15 S/cm. According to thermogravimetric analysis data, the copolymers are resistant to thermooxidative degradation up to 270-290 °C depending on the composition. The introduction of a vinyl alcohol fragment into the structure of copolymer macromolecules contributed to the improvement of their fibre- and film-forming properties - that is, fibres and transparent elastic films with good adhesion to various metal surfaces can be formed from solutions of modified copolymers based on 1-vinyl-1,2,4-triazole.

About the authors

G. F. Prozorova

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: prozorova@irioch.irk.ru

N. P. Kuznetsova

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: nkuznetsova@irioch.irk.ru

S. A. Korzhova

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: korzhova@irioch.irk.ru

References

  1. Prozorova G.F., Korzhova SA, PozdnyakovAS., Emel’yanov A.I., Ermakova T.G., Dubrovina V.I. Immunomodulatory properties of silver-containing nanocomposite on the basis of polyvinyltriazole // Russian Chemical Bulletin. 2015. N 6. P. 1437-1439. https://doi.org/10.1007/s11172-015-1028-x
  2. Lavrov N.A. Vinyl Acetate Copolymer-Based Adhesive Materials // Polymer Science. Series C. 2007. Vol. 49. Issue 3. P. 255-257. https://doi.org/10.1134/S1811239207030101
  3. Pozdnyakov AS., Emel’yanov At, Kuznetsova N.P., Ermakova T.G., Bolgova Yu.I., Trofimova O.M., et al. A Polymer Nanocomposite with CuNP Stabilized by 1-Vinyl-1,2,4-triazole and Acrylonitrile Copolymer // Synlett. 2016. Vol. 27. Issue 6. P. 900904. https://doi.org/10.1055/s-0035-1561292
  4. Pu H., Ye S., Wan D. Anhydrous proton conductivity of acid doped vinyltriazole-based polymers // Electrochimica Acta. 2007. Vol. 52. Issue 19. P. 5879-5883. https://doi.org/10.1016/j.electracta.2007.03.021
  5. Zezin A.A., Emel'yanov A.I., Prozorova G.F., Zezina E.A., Feldman V.I., Abramchuk S.S., et al. A one-pot radiation-chemical synthesis of metalpolymeric nanohybrides in solutions of vinyltriazole containing gold ions // Mendeleev Communications. 2019. Vol. 29. Issue 2. P. 158-159. https://doi.org/10.1016/j.mencom.2019.03.013
  6. Pozdnyakov A.S., Emel’yanov A.I., Kuznetsova N.P., Ermakova T.G., Korzhova S.A., Khutsish-vili S.S., et al. Synthesis and Characterization of Silver-Containing Nanocomposites Based on 1-Vinyl-1,2,4-triazole and Acrylonitrile Copolymer // Journal of Nanomaterials. 2019. Article ID 4895192, 7 p. https://doi.org/10.1155/2019/4895192
  7. Zezina E.A., Emel'yanov A.I., Pozdnyakov A.S., Prozorova G.F., Abramchuk S.S., Feldman V.I., et al. Radiation-induced synthesis of copper nanostructures in the films of interpolymer complexes // Radiation Physics and Chemistry. 2019. Vol. 158. P. 115-121. https://doi.org/10.1016/j.radphyschem2019.01.019
  8. Gargari J.E., Shakeri A., Kalal H.S., Khanchi A., Rashedi H. Synthesis and characterization of silica-polyvinyl imidazole core-shell nanoparticles via combination of RAFT polymerization and grafting-to method // Polymers for Advanced Technologies. 2017. Vol. 28. Issue 12. Р. 1884-1891. https://doi.org/10.1002/pat.4077
  9. Prozorova G.F., Pozdnyakov A.S., Emel'yanov A.I., Korzhova S.A., Ermakova T.G., Trofimov B.A. Water-soluble silver nanocomposites with 1 -Vinyl-1,2,4-triazole copolymer // Doklady Chemistry. 2013. Vol. 449. N 1. P. 87-88. https://doi.org/10.1134/S0012500813030051
  10. Kuznetsova N.P., Ermakova T.G., Pozdnyakov A.S., Emel'yanov A.I., Prozorova G.F. Synthesis and characterization of silver polymer nanocomposites of 1-vinyl-1,2,4-triazole with acrylonitrile // Russian Chemical Bulletin. 2013. Vol. 62. Issue 11. P. 2509-2513. https://doi.org/10.1007/s11172-013-0364-y
  11. Atanase L.I., Riess G. Thermal Cloud Point Fractionation of Poly(vinyl alcohol-co-vinyl acetate): Partition of Nanogels in the Fractions // Polymers. 2011. Vol. 3. Issue 3. P. 1065-1075. https://doi.org/103390/polym3031065
  12. Sipaut C.S., Halim H.A., Jafarzadeh M. Processing and properties of an ethylene-vinyl acetate blend foam incorporaring ethylene-vinyl acetate and polyurethane waste foams // Journal of Applied Polymer Science. 2017. Vol. 134. Issue 16. P. 44708. https://doi.org/10.1002/app.44708
  13. PozdnyakovAS., Ivanova AA., Emel'yanovAI., Ermakova T.G., Prozorova G.F. Nanocomposites with silver nanoparticles based on copolymer of 1-vinyl-1,2,4-triazole with N-vinylpyrrolidone // Russian Chemical Bulletin. 2017. Vol 66. N 6. P. 1099-1103. https://doi.org/10.1007/s11172-017-1860-2
  14. Ermakova T.G., Kuznetsova N.P., Sekreta-rev E.A., Pozdnyakov A.S., Prozorova G.F. Functional copolymers with triazole and acetate fragments // Russian Chemical Bulletin. 2017. Vol. 66. Issue 12. P. 2303-2307. https://doi.org/10.1007/s11172-017-2019-x
  15. Прозорова Г.Ф., Ермакова Т.Г., Кузнецова Н.П., Коржова С.А., Поздняков А.С. Новые термостойкие функциональные сополимеры // Известия вузов. Прикладная химия и биотехнология. 2018. Т. 8. N 4. С. 192-196. https://doi.org/10.21285/2227-2925-2018-8-4-192-196
  16. Прозорова Г.Ф., Коржова С.А., Мазяр И.В., Беловежец Л.А., Кузнецова Н.П., Емельянов А.И.. Синтез и свойства новых сополимер-Ag(0) нанокомпозитов // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9. N 1. С. 22-27. https://doi.org/.org/10.21285/2227-2925-2019-9-1-22-27
  17. Прозорова Г.Ф., Коржова С.А., Кузнецова Н.П., Емельянов А.И., Беловежец Л.А., Поздняков А.С. Синтез и биологическая активность новых полимерных серебросодержащих нанокомпозитов // Известия Академии наук. Серия химическая. 2019. N 10. С. 1897-1902.
  18. Ermakova T.G., Tatarova LA., Kuznetsova N.P. Vinylation of 1,2,4-Triazole // Russian Journal of General Chemistry. 1997. Vol. 67. N 5. P. 805-807.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».