Исследование показателей безопасности экстрактов каллусных культур Pulmonaria officinalis и их фитохимического состава на наличие биологически активных веществ с потенциальными геропротекторными свойствами

Обложка

Цитировать

Полный текст

Аннотация

Старение является естественным и неизбежным процессом, сопровождающимся различными заболеваниями. Растение медуница лекарственная (Pulmonaria officinalis) является источником биологически активных веществ, способных замедлять процессы старения и улучшать качество жизни людей. Каллусная культура данного растения может быть перспективным сырьем для создания нутрицевтиков. Однако состав медуницы лекарственной по наличию индивидуальных биологически активных веществ недостаточно изучен, особенно в отношении фенольных соединений с потенциальными геропротекторными свойствами. Проведено исследование фитохимического состава экстракта каллусных культур медуницы лекарственной на наличие биологически активных веществ с потенциальными геропротекторными свойствами и определены показатели его качества. Двукратную экстракцию каллусных культур Pulmonaria officinalis проводили на водяной бане с 70%-м этиловым спиртом. Определение показателей безопасности экстрактов проводили согласно требованиям фармакопейной статьи. К важным показателям качества экстрактов относили органолептические, физико-химические и микробиологические свойства. Продемонстрировано, что содержание тяжелых металлов, радионуклидов, сухой остаток, остаточное содержание спирта, а также органолептические показатели и микробиологическая чистота соответствуют нормативным документам. Фитохимический состав экстракта каллусных культур определяли методами высокоэффективной жидкостной и трехслойной хроматографии. Идентифицированы флавоноиды (рутин, изорамнетин, кверцетин), тритерпеновые сапонины и фенольные кислоты (п-кумаровая, феруловая, галловая, кофейная, розмариновая и хлорогеновая). Наличие тритерпенового сапонина, п-кумаровой, феруловой и галловой кислот обнаружено в экстракте каллусной культуры медуницы впервые. Количественный анализ биологически активных веществ показал, что содержание кофейной, розмариновой и хлорогеновой кислот в экстракте каллусной культуры является более высоким, чем содержание этих же веществ в экстрактах из надземных частей растения.

Об авторах

Л. С. Дышлюк

Кемеровский государственный университет

Email: soldatovals1984@mail.ru

М. Ю. Дроздова

Кемеровский государственный университет

Email: drozdowa.margarita.00@yandex.ru

А. И. Лосева

Кемеровский государственный университет

Email: unid.kemsu@mail.ru

Список литературы

  1. Prasanth M.I., Sivamaruthi B.S., Kesika P., Rosmol P.S., Tencomnao T. Unraveling the mode of action of medicinal plants in delaying age-related diseases using model organisms // Medicinal and Aromatic Plants. 2021. P. 37-60. https://doi.org/10.1016/B978-0-12-819590-1.00002-1
  2. Pandey S., Phulara S.C., Mishra S.K., Bajpai R., Kumar A., Niranjan A., et al. Betula utilis extract prolongs life expectancy, protects against amyloid-в toxicity and reduces Alpha Synuclien in Caenorhab-ditis elegans via DAF-16 and SKN-1 // Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2020. Vol. 228, 108647. https://doi.org/10.1016/j.cbpc.2019.108647
  3. Song B., Zheng B., Li T., Liu R.H. Raspberry extract ameliorates oxidative stress in Caenorhabditis elegans via the SKN-1/Nrf2 pathway // Journal of Functional Foods. 2020. Vol. 70. Issue 17. 103977. https://doi.org/10.1016/jjff.2020.103977
  4. Santos M.A., Franco F.N., Caldeira C.A., de Araujo G.R., Vieira A., Chaves M.M., et al. Antioxidant effect of Resveratrol: Change in MAPK cell signaling pathway during the aging process // Archives of Gerontology and Geriatrics. 2020. Vol. 92. 104266. https://doi.org/10.1016/j.archger.2020.104266
  5. Folch J., Busquets O., Ettcheto M., Sanchez-Lopez E., Pallas M., Beas-Zarate C., et al. Experimental models for aging and their potential for novel drug discovery // Current Neuropharmacology. 2018. Vol. 16. Issue 10. P. 1466-1483. https://doi.org/10.2174/1570159X15666170707155345
  6. Lopez-Otin C., Galluzzi L., Freije J.M., Madeo F., Kroemer G. Metabolic control of longevity // Cell. 2016. Vol. 166. Issue 4. P. 802-821. https://doi.org/10.1016/j.cell.2016.07.031
  7. Petr M.A., Tulika T., Carmona-Marin L.M., Scheibye-Knudsen M. Protecting the Aging Genome // Trends in Cell Biology. 2020. Vol. 30 Issue 2. P. 117-132. https://doi.org/10.1016/j.tcb.2019.12.001
  8. Senol F.S., Orhan I., Yilmaz G., Cicek M., Se-ner B. Acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibition studies and antioxidant activities of 33 Scutellaria L. taxa from Turkey // Food and Chemical Toxicology. 2010. Vol. 48 Issue 3. P. 781788. https://doi.org/10.1016/j.fct.2009.12.004
  9. Gu J., Li Q., Liu J., Ye Z., Feng T., Wang G., et al. Ultrasonic-assisted extraction of polysaccharides from Auricularia auricula and effects of its acid hydrolysate on the biological function of Caenorhabditis elegans // International Journal of Biological Macromolecules. 2020. Vol. 167. P. 423-433. https://doi.org/10.1016/j.ijbiomac.2020.11.160
  10. Markaki M., Tavernarakis N. Caenorhabditis elegans as a model system for human diseases // Current Opinion in Biotechnology. 2020. Vol. 63. P. 118125. https://doi.org/10.1016/j.copbio.2019.12.011
  11. Apfeld J., Alper S. What can we learn about human disease from the nematode C. elegans? // Disease Gene Identification. 2018. Vol. 1706. P. 5375. https://doi.org/10.1007/978-1-4939-7471-9_4
  12. Полухина Т.С., Нургалиева Г.Б. Изучение количественного содержания аскорбиновой кислоты в надземной части медуницы лекарственной (Pulmonaria officinalis L.) // Фундаментальные и прикладные научные исследования: актуальные вопросы, достижения и инновации: сб. ст. победителей V Междунар. науч.-практ. конф.: в 4 ч. (Пенза, 15 мая 2017 г.). Пенза: Наука и Просвещение, 2017. С.243-245.
  13. Dyshlyuk L.S., Fedorova A.M., Dolganyuk V.F., Prosekov A.Y. Optimization of extraction of polyphenolic compounds from medicinal lungwort (Pulmonaria officinalis L.) // Journal of Pharmaceutical Research International. 2020. Vol. 32. Issue 24. P. 36-45. https://doi.org/10.9734/jpri/2020/v32i2430807
  14. Akram M., Rashid A. Anti-coagulant activity of plants: mini review // Journal of Thrombosis and Thrombolysis. 2017. Vol. 44. Issue 3. P. 406-411. https://doi.org/10.1007/s11239-017-1546-5
  15. Neagu E., Radu G.L., Albu C., Paun G. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts // Saudi Journal of Biological Sciences. 2018. Vol. 25. Issue 3. P. 578-585. https://doi.org/10.1016Zj.sjbs.2016.02.016
  16. Hawryl M.A., Waksmundzka-Hajnos M. Micro 2D-TLC of selected plant extracts in screening of their composition and antioxidative properties // Chromatographia. 2013. Vol. 76. Issue 19-20. P. 1347-1352. https://doi.org/10.1007/s10337-013-2490-y
  17. Krzyzanowska-Kowalczyk J., Kolodziejczyk-Czepas J., Kowalczyk M., Pecio L., Nowak P., Stochmal A. Yunnaneic acid B, a component of Pulmonaria officinalis extract, prevents peroxynitrite-induced oxidative stress in vitro // Journal of Agricultural and Food Chemistry. 2017. Vol. 65. Issue 19. P. 38273834. https://doi.org/10.1021/acs.jafc.7b00718
  18. Krzyzanowska-Kowalczyk J., Pecio L., Moldoch J., Ludwiczuk A., Kowalczyk M. Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS comparison of spring and autumn metabolite profiles // Molecules. 2018. Vol. 23. Issue 9. 2277. https://doi.org/10.3390/molecules23092277
  19. Захарова О.А., Любаковская Л.А., Гурина Н.С., Спиридович Е.В. Каллусная культура как альтернативный источник микроклонального размножения // Современные проблемы природопользования, охотоведения и звероводства. 2004. N 1. C. 54-55.)
  20. Waidyanatha S., Pierfelice J., Cristy T., Mutlu E., Burback B., Rider C.V., et al. A strategy for test article selection and phytochemical characterization of Echinacea purpurea extract for safety testing // Food and Chemical Toxicology. 2020. Vol. 137. 111125. https://doi.org/10.1016/j.fct.2020.111125
  21. Henneh I.T., Huang B., Musayev F.N., Al Hashimi R., Safo M.K., Armah F.A., et al. Structural elucidation and in vivo anti-arthritic activity of j8-amyrin and polpunonic acid isolated from the root bark of Ziziphus abyssinica HochstEx. A Rich (Rhamnaceae) // Bioorganic chemistry. 2020. Vol. 98. 103744. https://doi.org/10.1016/j.bioorg.2020.103744
  22. De Melo K.M., de Oliveira F.T.B., Silva R.A.C., Quindere A.L.G., Marinho Filho J.D.B., Araujo A.J., et al. a,e-Amyrin, a pentacyclic triterpenoid from Protium heptaphyllum suppresses adipocyte differentiation accompanied by down regulation of PPARy and C/EBPa in 3T3-L1 cells // Biomedicine & Pharmacotherapy. 2019. Vol. 109. P. 18601866. https://doi.org/10.1016/j.biopha.2018.11.027
  23. Cordeiro L.M., Machado M.L., da Silva A.F., Baptista F.B.O., da Silveira T.L., Soares F.A.A., et al. Rutin protects Huntington's disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: study in Caenorhabditis elegans model // Food and Chemical Toxicology. 2020. Vol. 141. 111323. https://doi.org/10.1016/j.fct.2020.111323
  24. Sugawara T., Sakamoto K. Quercetin enhances motility in aged and heat-stressed Caenorhabditis elegans nematodes by modulating both HSF-1 activity, and insulin-like and p38-MAPK signalling // PloS ONE. 2020. Vol. 15. Issue 9. e0238528. https://doi.org/10.1371/journal.pone.0238528
  25. Sharma S.H., Rajamanickam V., Nagarajan S. Supplementation of p-coumaric acid exhibits chemopreventive effect via induction of Nrf2 in a short-term preclinical model of colon cancer // European Journal of Cancer Prevention. 2019. Vol. 28. Issue 6. P. 472482. https://doi.org/10.1097/CEJ.0000000000000496
  26. Amalan V., Vijayakumar N., Indumathi D., Ramakrishnan A. Antidiabetic and antihyperlipidem-ic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: in vivo approach // Biomedicine and Pharmacotherapy. 2016. Vol. 84. P. 230-236. https://doi.org/10.1016/j.biopha.2016.09.039
  27. Peng J., Zheng T.-T., Liang Y., Duan L.-F., Zhang Y.-D., Wang L.J., et al. p-Coumaric acid protects human lens epithelial cells against oxidative stress-induced apoptosis by MAPK signaling // Oxidative Medicine and Cellular Longevity. 2018. Vol. 2018. 8549052. https://doi.org/10.1155/2018/8549052
  28. Wang N., Zhou Y., Zhao L., Wang C., Ma W., Ge G., et al. Ferulic acid delayed amyloid в-induced pathological symptoms by autophagy pathway via a fasting-like effect in Caenorhabditis elegans // Food and Chemical Toxicology. 2020. Vol. 146. 111808. https://doi.org/10.1016/j.fct.2020.111808
  29. Szwajgier D., Borowiec K., Pustelniak K. The neuroprotective effects of phenolic acids: molecular mechanism of action // Nutrients. 2017. Vol. 9. Issue 5. 477. https://doi.org/10.3390/nu9050477
  30. Li J.-Q., Fang J.-S., Qin X.-M., Gao L. Metabolomics profiling reveals the mechanism of caffeic acid in extending lifespan in Drosophila melanogaster // Food & Function. 2020. Vol. 11. Issue 9. P. 82028213. https://doi.org/10.1039/d0fo01332c
  31. Carranza A.D.V., Saragusti A., Chiabrando G.A., Carrari F., Asis R. Effects of chlorogenic acid on thermal stress tolerance in C. elegans via HIF-1, HSF-1 and autophagy // Phytomedicine. 2019. Vol. 66. P. 153132. https://doi.org/10.1016/j.phymed.2019.153132
  32. Han B., He C. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases // Pharmacological Research. 2021. Vol. 166. 105428. https://doi.org/10.1016/j.phrs.2021.105428

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).