Properties of nonwoven fabric modified with chitosan solution

Cover Page

Cite item

Full Text

Abstract

The modification of nonwoven fabrics designed to impart antibacterial properties is an important process in the manufacture of a wide range of medical products, including medical face masks, wound dressings, surgical drapes, etc. However, apart from antibacterial properties, the effect of modification on the consumer properties of nonwoven fabric is also of interest. The present study was aimed at examining the consumer and antibacterial properties of nonwoven fabric modified with chitosan. In addition to exhibiting antibacterial activity, chitosan is also a biocompatible hydrophilic polymer. In this study, four industrial grades of chitosan were examined: Premium Quality chitosan (Italy), food-grade acid-soluble chitosan, chitosan succinate, and low-molecular-weight food-grade water-soluble chitosan (Russia). It was found that of the studied chitosan grades, food-grade acid-soluble chitosan and Premium Quality chitosan exhibit antibacterial activity. The treatment of hydrophilic nonwoven fabric obtained using the spunbond technology with a chitosan solution leads to a decrease in air permeability by 19% and an increase in stiffness by 77%. When chitosan solution concentrations of up to 0.2% are used, vapor permeability increases; however, a further concentration increase leads to a decrease in this parameter. Within the analyzed range, the hygroscopicity does not change. The study results indicate the inexpediency of impregnating medical nonwoven fabrics with chitosan solution at concentrations higher than 0.2%, since at higher concentrations, the consumer properties (air and vapor permeability) of modified nonwoven fabric deteriorate.

About the authors

R. Yu. Galimzyanova

Kazan National Research Technological University

Email: galimzyanovar@gmail.com
ORCID iD: 0000-0001-7059-1481

E. V. Perushkina

Kazan National Research Technological University

Email: perushkina_elena@mail.ru
ORCID iD: 0000-0002-2631-4724

M. S. Lisanevich

Kazan National Research Technological University

Email: lisamevichms@gmail.com
ORCID iD: 0000-0002-9715-9231

E. Ali

Kazan National Research Technological University

Email: edres2015ali@gmail.com
ORCID iD: 0009-0007-6319-2168

References

  1. Лисаневич М.С., Перушкина Е.В. Исследование возможности модификации нетканых материалов хлоргексидином с целью придания антибактериальных свойств // Известия вузов. Прикладная химия и биотехнология. 2022. Т. 12. N 4. С. 633–639. doi: 10.21285/2227-2925-2022-12-4-633-639. EDN: YJYTOD.
  2. Xin Z., Du S., Zhao C., Chen H., Sun M., Shunjie Y., et al. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components // Applied Surface Science. 2016. Vol. 365. P. 99–107. doi: 10.1016/j.apsusc.2015.12.217.
  3. Markovic D., Milovanovic S., Radetic M., Jokic B., Zizovic I. Impregnation of corona modified polypropylene nonwoven material with thymol in supercritical carbon dioxide for antimicrobial application // The Journal of Supercritical Fluids. 2015. Vol. 101. P. 215–221. doi: 10.1016/j.supflu.2015.03.022.
  4. Degoutin S., Jimenez M., Casetta M., Bellayer S., Chai F., Blanchemain N., et al. Anticoagulant and antimicrobial finishing of non-woven polypropylene textiles // Biomedical Materials. 2012. Vol. 7, no. 3. P. 035001. doi: 10.1088/1748-6041/7/3/035001.
  5. La D.D., Pham K.T.T, Lai H.T., Tran D.L., Bui C.V., Nguyen P.H.T., et al. Fabrication of antibacterial Ag/graphene-integrated non-woven polypropylene textile for air pollutant filtering // Waste and Biomass Valorization. 2023. Vol. 14. P. 3275–3284. doi: 10.1007/s12649-023-02101-y.
  6. Galimzyanova R.Y., Lisanevich M.S., Khakimullin Y.N. Influence of electron radiation on the physical and mechanical properties of a nonwoven fabric made using Spunlace technology // Journal of Physics: Conference Series. 2021. Vol. 2124. P. 012015. doi: 10.1088/1742-6596/2124/1/012015.
  7. Lisanevich M.S., Galimzyanova R.Yu., Ivanov V.V. Analysis of the effect of ionizing radiation on the properties of bulk nonwoven material // Journal of Physics: Conference Series. 2021. Vol. 2124. P. 012024. doi: 10.1088/1742-6596/2124/1/012024.
  8. Abdou E.S., Elkholy S.S., Elsabee M.Z., Mohamed E. Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan // Journal of Applied Polymer Science. 2008. Vol. 108, no. 4. P. 2290–2296. doi: 10.1002/app.25937.
  9. Лисаневич М.С., Галимзянова Р.Ю., Иванов В.В. Исследование влияния низкотемпературной плазмы на свойства нетканого материала Холлофайбер® // Известия высших учебных заведений. Технология текстильной промышленности. 2022. N 5. С. 140–145. doi: 10.47367/0021-3497_2022_5_140. EDN: HUDDX.
  10. Хакимуллин Ю.Н., Гильмутдинова Г.М., Бахридинова А.Р., Лисаневич М.С., Рахматуллина Э., Галимзянова Р.Ю. Исследование влияния неравновесной низкотемпературной плазмы на свойства ламинированного нетканого материала // Известия высших учебных заведений. Технология текстильной промышленности. 2016. Т. 34. N 4. С. 68–71. EDN: YNLHQD.
  11. Galimzyanova R.Y., Lisanevich M.S., Khakimullin Y.N. Influence of nonequilibrium low-temperature plasma on the properties of nonwoven fabric based on polypropylene // Key Engineering Materials. 2021. Vol. 899. P. 179–184. doi: 10.4028/ href='www.scientific.net/KEM.899.179' target='_blank'>www.scientific.net/KEM.899.179.
  12. Wang C.-С., Chen C.-С. Anti-bacterial and swelling properties of acrylic acid grafted and collagen/сhitosan immobilized polypropylene non-woven fabrics // Journal of Applied Polymer Science. 2005. Vol. 98, no. 1. P. 391–400. doi: 10.1002/app.22224.
  13. Wang C.-С., Wu W.-Y., Chen C.-С. Antibacterial and swelling properties of N-isopropyl acrylamide grafted and collagen/chitosan-immobilized polypropylene nonwoven fabrics // Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2011. Vol. 96B, no. 1. P. 16–24. doi: 10.1002/jbm.b.31709.
  14. Wang C.-С., Su C.-H., Chen C.-С. Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement // Journal of Biomedical Materials Research Part A. 2008. Vol. 84A, no. 4. P. 1006–1017. doi: 10.1002/jbm.a.31482.
  15. Shahidi S., Yazdani M., Hezavehi E. Surface modification of polypropylene nonwoven fabrics by low temperature plasma followed by chitosan grafting // BioChemistry: an Indian Journal. 2014. Vol. 8, no. 4. P. 99–105.
  16. Куликов С.Н., Тюрин Ю.А., Хайруллин Р.З. Антибактериальная активность хитозана в отношении энтеробактерий и стафилококков, выделенных у пациентов с дисбактериозом кишечника // Казанский медицинский журнал. 2010. Т. 91. N 5. С. 656–660. EDN: NQUNYX.
  17. Герасименко Д.В., Авдиенко И.Д., Банникова Г.Е., Зуева О.Ю., Варламов В.П. Антибактериальная активность водорастворимых низкомолекулярных хитозанов в отношении различных микроорганизмов // Прикладная биохимия и микробиология. 2004. Т. 40. N 3. С. 301–306. EDN: OYOYGH.
  18. Liu X.F., Guan Y.L., Yang D.Z., Li Z., Yao K.D. Antibacterial action of chitosan and carboxymethylated chitosan // Journal of Applied Polymer Science. 2001. Vol. 79, no. 7. P. 1324–1335. doi: 10.1002/1097-4628(20010214)79:73.0.CO;2-L.
  19. Raafat D., von Bargen K., Haas A., Sahl H.-G. Insights into the mode of action of chitosan as an antibacterial compound insights into the mode of action of chitosan as an antibacterial compound // Applied and Environmental Microbiology. 2008. Vol. 74, no. 12. doi: 10.1128/AEM.00453-08.
  20. Kulikov S., Tikhonov V., Blagodatskikh I., Bezrodnykh E., Lopatin S., Khairullin R., et al. Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA) // Carbohydrate Polymers. 2012. Vol. 87, no. 1. P. 545–550. doi: 10.1016/j.carbpol.2011.08.017.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).