Non-conventional yeast Meyerozyma guilliermondii strain Y-780 as a protein producer in the submerged fermentation of sawmill waste hydrolysate
- Authors: Strekalovskaya E.I.1, Belovezhets L.A.1
-
Affiliations:
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 15, No 3 (2025)
- Pages: 403-411
- Section: Physico-chemical biology
- URL: https://journal-vniispk.ru/2227-2925/article/view/366162
- DOI: https://doi.org/10.21285/achb.992
- EDN: https://elibrary.ru/ASYDTH
- ID: 366162
Cite item
Full Text
Abstract
The annual generation of wood waste in the Russian Federation is currently estimated at 75–113 million cubic meters. The conversion of these lignocellulosic residues into value-added products, including bioenergy sources, feed additives, and organic acids, constitutes a priority within the nation’s environmental policy framework. This study details the production of a protein-rich product from the biomass of the non-conventional yeast Meyerozyma guilliermondii strain Y-780 cultivated on a hydrolysate derived from sawmill waste. An analysis of the cultivation process revealed that the yeast metabolized the bulk of reducing substances within the first 48 hours, concomitant with a phase of vigorous biomass accumulation. The investigation of the pH influence revealed that the strain Y-780 of Meyerozyma guilliermondii exhibited substantial yeast growth on the hydrolysate at a pH of 4.6. The incorporation of corn extract into the mineral culture medium based on the hydrolysate led to an almost threefold increase in biomass yield compared to media containing only inorganic nitrogen sources. The research established a distinct consumption profile for reducing substances by the yeast, which was highly dependent on the composition of the culture medium. The addition of nitrogen, vitamins, and biogenic elements to the hydrolysate resulted in an enhancement of its nutritional value, leading to an increase in crude protein yield to 47%. These findings suggest the biological suitability of the wood sawdust hydrolysate and underscore the significant biotechnological potential of Meyerozyma guilliermondii strain Y-780 for feed protein biosynthesis.
About the authors
E. I. Strekalovskaya
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ivanova.iem@gmail.com
ORCID iD: 0000-0003-4216-8859
L. A. Belovezhets
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: belovezhets@irioch.irk.ru
ORCID iD: 0000-0001-5922-3397
References
- Knob A., Izidoro S.C., Lacerda L.T., Rodrigues A., de Lima V.A. A novel lipolytic yeast Meyerozyma guilliermondii: efficient and low-cost production of acid and promising feed lipase using cheese whey // Biocatalysis and Agricultural Biotechnology. 2020. Vol. 24. P. 101565. doi: 10.1016/j.bcab.2020.101565.
- Yan W., Gao H., Qian X., Jiang Y., Zhou J., Dong W., et al. Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii // Biotechnology Advances. 2021. Vol. 46. P. 107674. doi: 10.1016/j.biotechadv.2020.107674.
- Hamidoghli A., Yun H., Won S., Kim S., Farris N.W., Bai S.C. Evaluation of a single-cell protein as a dietary fish meal substitute for whiteleg shrimp Litopenaeus vannamei // Fisheries Science. 2019. Vol. 85. P. 147–155. doi: 10.1007/s12562-018-1275-5.
- Sidana A., Kaur S., Yadav S.K. Assessment of the ability of Meyerozyma guilliermondii P14 to produce second-generation bioethanol from giant reed (Arundo donax) biomass // Biomass Conversion and Biorefinery. 2023. Vol. 13. P. 16723–16735. doi: 10.1007/s13399-021-02211-4.
- Беловежец Л.А., Волчатова И.В., Медведева С.А. Перспективные способы переработки вторичного лигноцеллюлозного сырья // Химия растительного сырья. 2010. N 2. С. 5–16. EDN: LLZVJV.
- Костылева С.В. Экономические и экологические аспекты комплексного использования отходов лесопереработки (на примере Иркутской области) // Вестник Омского университета. Серия «Экономика». 2016. N 3. С. 184–193. EDN: WXTGGN.
- Марченко О.В., Соломин С.В., Козлов А.Н. Возможности использования древесных отходов в энергетике России // Экология и промышленность России. 2019. Т. 23. N 6. С. 17–21. doi: 10.18412/1816-0395-2019-06-17-21. EDN: TVOTJB.
- Jayamma P., Shirnalli G.G., Goudar D.G., Olekar S.N. Isolation and identification of thermotolerant yeast isolates from different fruit wastes // The Pharma Innovation Journal. 2022. Vol. 11, no. 1. P. 855–859.
- Dubois M., Gilles K.A., Hamilton J., Robers P.A., Smith F. Colorimetric method for determination of sugars and related substances // Analytical Chemistry. 1956. Vol. 28, no. 3. P. 350–356. doi: 10.1021/ac60111a017.
- Yue F., Zhang J., Xu J., Niu T., Lü X., Liu M. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method // Frontiers in Nutrition. 2022. Vol. 9. P. 963318. doi: 10.3389/fnut.2022.963318.
- Скиба Е.А. Биосинтез кормовых дрожжей на средах, полученных из плодовых оболочек овса // Известия вузов. Прикладная химия и биотехнология. 2016. Т. 6. N 3. С. 140–142. doi: 10.21285/2227-2925-2016-6-3-140-142. EDN: WZQKFV.
- Almeida J.R., Wiman M., Heer D., Brink D.P., Sauer U., Hahn-Hägerdal B., et al. Physiological and molecular characterization of yeast cultures pre-adapted for fermentation of lignocellulosic hydrolysate // Fermentation. 2023. Vol. 9, no. 1. P. 72. doi: 10.3390/fermentation9010072.
- Джанаев К.И., Цугкиев Б.Г. Культивирование дрожжей на питательной среде из биомассы топинамбура // Известия Горского государственного аграрного университета. 2012. Т. 49. N 1–2. C. 398–400. EDN: OYYRLJ.
- Raita S., Kusnere Z., Spalvins K., Blumberga D. Optimization of yeast cultivation factors for improved SCP production // Environmental and Climate Technologies. 2022. Vol. 26, no. 1. P. 848–861. doi: 10.2478/rtuect-2022-0064.
- Жуковская С.В. Изучение влияния физико-химических факторов на образование биомассы хлебопекарных дрожжей // Научный журнал «Евразийский Союз Ученых». 2015. N 4–5. C. 85–88. EDN: XDDZNH.
- Шавел Я. Факторы стресса для дрожжевых клеток // Пиво и напитки. 2001. N 1. С. 24–27.
- Hahn-Hägerdal B., Karhumaa K., Larsson C.U., Gorwa-Grauslund M., Görgens J., van Zyl W.H. Role of cultivation media in the development of yeast strains for large scale industrial use // Microbial Cell Factories. 2005. Vol. 4. P. 31. doi: 10.1186/1475-2859-4-31.
- Patelski P., Berlowska J., Dziugan P., Pielech-Przybylska K., Balcerek M., Dziekonska U., et al. Utilisation of sugar beet bagasse for the biosynthesis of yeast SCP // Journal of Food Engineering. 2015. Vol. 167. P. 32–37. doi: 10.1016/j.jfoodeng.2015.03.031.
- Lapeña D., Kosa G., Hansen L.D., Mydland L.T., Passoth V., Horn S.J., et al. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products // Microbial Cell Factories. 2020. Vol. 19. P. 19. doi: 10.1186/s12934-020-1287-6.
- Фаткудинова Ю.В., Либерман А.А., Любомирова В.Н., Шленкина Т.М. Биологическая ценность белка в составе кормов для рыб // Профессиональное обучение: теория и практика: материалы II Междунар. науч.-практ. конф. (г. Ульяновск, 25 июня 2020 г.). Ульяновск: Изд-во УлГПУ им. И. Н. Ульянова, 2020. С. 663–667. EDN: NDAKCL.
- Волошин Г.А., Акимов Е.Б., Артемов Р.В., Гершунская В.В. Состояние и перспективы развития рынка комбикормов для индустриальной аквакультуры в Российской Федерации // Труды ВНИРО. 2022. Т. 190. С. 163–169. doi: 10.36038/2307-3497-2022-190-163-169. EDN: ZDVXMI.
- Ritala A., Häkkinen S.T., Toivari M., Wiebe M.G. Single cell protein – state-of-the-art, industrial landscape and patents 2001–2016 // Frontiers in Microbiology. 2017. Vol. 8. P. 2009. doi: 10.3389/fmicb.2017.02009.
- Øverland M., Skrede A. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture // Journal of the Science of Food and Agriculture. 2017. Vol. 97, no. 3. P. 733–742. doi: 10.1002/jsfa.8007.
- Agboola J.O., Øverland M., Skrede A., Hansen J.Ø. Yeast as major protein-rich ingredient in aquafeeds: a review of the implications for aquaculture production // Reviews in Aquaculture. 2021. Vol. 13, no. 2. P. 949–970. doi: 10.1111/raq.12507.
Supplementary files


