Root growth in transgenic tobacco plants with overexpression of the PtrXTH1 gene encoding xyloglucan endotransglycosylase under abiotic stress

Capa

Citar

Texto integral

Resumo

Xyloglucan endotransglycosylases are hydrolytic cell wall enzymes that are involved in the regulation and promotion of plant growth. Overexpression of genes encoding xyloglucan endotransglycosylases can have a positive effect on the growth and stress tolerance of transgenic plants; however, the mechanisms of such influence remain poorly understood. This study was aimed at creating transgenic tobacco plants with overexpression of the PtrXTH1 gene encoding aspen xyloglucan endotransglycosylase, as well as conducting a morphophysiological analysis of their roots under abiotic stress. The transgenic tobacco plants were characterized by an increased root length as compared to wild plants, both under optimal conditions and in response to salinity (100 mM sodium chloride), low temperature (12 °C), and cadmium contamination (200 μM cadmium acetate). The area of root parenchyma cells in transgenic tobacco plants is larger as compared to wild plants only under the effect of cadmium acetate, whereas under normal conditions and under low-temperature and salinity stress, no difference in cell size was observed. The PtrXTH1 gene overexpression contributed to the increased total antioxidant capacity in the roots, as well as a higher content of proline, water-soluble sugars, and oxidized and reduced glutathione, in the context of the three stress factors. Thus, the PtrXTH1 transgene stimulates the growth of tobacco roots under normal and abiotic stress conditions, which is accompanied by positive changes in the antioxidant system.

Sobre autores

Z. Berezhneva

Institute of Biochemistry and Genetics, Ufa Federal Research Center RAS

Email: berezhneva-z@yandex.ru

K. Musin

Institute of Biochemistry and Genetics, Ufa Federal Research Center RAS

Email: khalit.musin@yandex.ru

B. Kuluev

Institute of Biochemistry and Genetics, Ufa Federal Research Center RAS

Email: kuluev@bk.ru

Bibliografia

  1. Van Sandt V.S.T., Suslov D., Verbelen J.-P., Vissenberg K. Xyloglucan endotransglucosylase activity loosens a plant cell wall // Annals of Botany. 2007. Vol. 100. Р. 1467–1473. doi: 10.1093/aob/mcm248.
  2. Cho S.K., Kim J.E., Park J.-A., Eom T.J., Kim W.T. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/ hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants // FEBS Letters. 2006. Vol. 580, no. 13. P. 3136–3144. doi: 10.1016/j.febslet.2006.04.062.
  3. Han Y., Ban Q., Hou Y., Meng K., Suo J., Rao J. Isolation and characterization of two persimmon xyloglucan endotransglycosylase/hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening // Frontiers in Plant Science. 2016. Vol. 7. P. 624. doi: 10.3389/fpls.2016.00624.
  4. Han Y., Han S., Ban Q., He Y., Jin M., Rao J. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants // Plant Cell Reports. 2017. Vol. 36. P. 583–596. doi: 10.1007/s00299-017-2105-4.
  5. Kuluev B.R., Mikhaylova E.V., Berezhneva Z.A., Nikonorov Y.M., Postrigan B.N., Kudoyarova G.R., et al. Expression profiles and hormonal regulation of tobacco NtEXGT gene and its involvement in abiotic stress response // Plant Physiology and Biochemistry. 2017. Vol. 111. P. 203–215. doi: 10.1016/j.plaphy.2016.12.005.
  6. Кулуев Б.Р., Бережнева З.А., Князев А.В., Никоноров Ю.М., Чемерис А.В. Участие генов ксилоглюканэндотрансгликозилаз PtrXTH1 и PnXTH1 в регуляции роста и адаптации растений к стресс-факторам // Физиология растений. 2018. Т. 65. N 1. С. 26–37. doi: 10.7868/S0015330318010037. EDN: YMTJBE.
  7. Han Y., Wang W., Sun J., Ding M., Zhao R., Deng S., et al. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants // Journal of Experimental Botany. 2013. Vol. 64, no. 14. P. 4225–4238. doi: 10.1093/jxb/ert229.
  8. Yang K.A., Lim C.J., Hong J.K., Park C.Y., Cheong Y.H., Chung W.S., et al. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage // Plant Science. 2006. Vol. 171, no. 1. P. 175–182. doi: 10.1016/J.PLANTSCI.2006.03.013.
  9. Dong J., Jiang Y., Chen R., Xu Z., Gao X. Isolation of a novel xyloglucan endotransglucosylase (OsXET9) gene from rice and analysis of the response of this gene to abiotic stresses // African Journal of Biotechnology. 2011. Vol. 10, no. 76. P. 17424–17434. doi: 10.5897/AJB11.1242.
  10. Wang M., Xu Z., Ding A., Kong Y. Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco (Nicotiana tabacum L.) // Genes. 2018. Vol. 9, no. 6. P. 273. doi: 10.3390/genes9060273.
  11. Бережнева З.А., Кашафутдинова А.Р., Кулуев Б.Р. Рост корней трансгенных растений Nicotiana tabacum L. с конститутивной экспрессией гена глутатионсинтетазы рапса BnGSH при действии стрессовых факторов // Вестник защиты растений. 2017. N 3. С. 55–59. EDN: ZIFWJZ.
  12. Duncan D.B. Multiple range and multiple F test // Biometrics. 1955. Vol. 11, no. 1. P. 1–42. doi: 10.2307/3001478.
  13. Филин А.Н., Иванов В.Б. Влияние 2,4-Д на пролиферацию и растяжение клеток в корнях Arabidopsis thaliana // Физиология растений. 2016. Т. 63. N 1. С. 174– 179. doi: 10.7868/S0015330316010061. EDN: UXXEKT.
  14. Чевари С., Чаба И., Секей И. Роль супероксиддисмутазы в окислительных процессах клетки и метод определения ее в биологических материалах // Лабораторное дело. 1985. N 11. С. 678–681.
  15. Ермаков А.И., Арасимович В.В., Ярош Н.П., Перуанский Ю.В., Луковникова Г.А., Смирнова-Иконникова М.И. Методы биохимического исследования растений. Л.: Агропромиздат, 1987. 430 с.
  16. Verma S., Dubey R.S. Lead toxicity induces lipid peroxidation and alert the activities of antioxidant enzymes in grooving rice plants // Plant Science. 2003. Vol. 164, no. 4. P. 645–655. doi: 10.1016/S0168-9452(03)00022-0.
  17. Dubois M., Gilles K.A., Hamilton J., Robers P.A., Smith F. Colorimetric method for determination of sugar sand related substances // Analytical Chemistry. 1956. Vol. 28, no. 3. P. 350–356. doi: 10.1021/AC60111A017.
  18. Panchuck I.I. Volkov R.A., Schöffl F. Heat stressand heat shock transcription factor-depend expression and activity of ascorbate peroxidase in Arabidopsis // Plant Physiology. 2002. Vol. 129, no. 2. P. 838–853. doi: 10.1104/pp.001362.
  19. Habig W.H., Pabst M.S., Jakoby W.B. Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation // Journal of Biological Chemistry. 1974. Vol. 249, no. 22. P. 7130–7139.
  20. Шалыго Н.В., Щербаков Р.А., Доманская И.Н., Радюк М.С. Спектрофлуориметрический метод определения окисленного и восстановленного глутатиона в растениях // Физиология и биохимия культурных растений. 2007. Т. 39. N 3. С. 264–270.
  21. Taylor N.L., Millar A.H. Oxidative stress and plant mitochondria // Mitochondria. Methods in Molecular Biology / eds D. Leister, J.M. Herrmann. Humana Press, 2007. Vol. 372. P. 389–403. doi: 10.1007/978-1-59745-365-3_28.
  22. Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies // Plant and Soil. 1973. Vol. 39. P. 205–207. doi: 10.1007/BF00018060.
  23. Khedr A.H.A., Abbas M.A., Wahid A.A.A., Quick W.P., Abogadallah G.M. Proline induces the expression of saltstress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress // Journal of Experimental Botany. 2003. Vol. 54, no. 392. P. 2553–2562. doi: 10.1093/jxb/erg277.
  24. Boestfleisch C., Wagenseil N.B., Buhmann A.K., Seal C.E., Wade E.M., Muscolo A., et al. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation // AoB Plants. 2014. Vol. 6. doi: 10.1093/aobpla/plu046.
  25. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Analytical Biochemistry. 1976. Vol. 72, no. 1-2. P. 248–254. doi: 10.1006/abio.1976.9999.
  26. Швец Д.Ю., Бережнева З.А., Мусин Х.Г., Кулуев Б.Р. Влияние rol-генов Agrobacterium rhizogenes штаммов А4, 15834 и К599 на рост корней трансгенных растений табака и состояние антиоксидантной системы в условиях абиотического стресса // Физиология растений. 2024. Т. 71. N 5. С. 632–646. doi: 10.31857/S0015330324050111. EDN: MLUDPV.
  27. Бережнева З.А., Мусин Х.Г., Кулуев Б.Р. Рост корней трансгенных растений табака со сверхэкспрессией генов экспансинов и ксилоглюканэндотрансгликозилаз в условиях кадмиевого стресса // Физиология растений. 2022. Т. 69. N 5. С. 522–530. doi: 10.31857/S0015330322050037. EDN: OVOZAD.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».