Prediction of acceleration ability of mixtures containing high explosives and aluminum hydride
- Authors: Makhov M.N.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Issue: Vol 14, No 1 (2021)
- Pages: 83-88
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/286612
- DOI: https://doi.org/10.30826/CE21140110
- ID: 286612
Cite item
Abstract
From the results of calculations, it follows that the addition of aluminum (Al) and aluminum hydride (AlH3) significantly increases the potential energy content of HMX. This parameter is higher in the case of Al-containing mixtures. However, the compositions with AlH3 form a considerable number of moles of gaseous products in distinction to the mixtures with Al. The acceleration ability (AA) of aluminized compositions was measured with the use of the method known as M-40 (acceleration of a steel plate from the end of a charge inside the thick-walled steel shell). Furthermore, the AA values were calculated for the systems containing Al and AlH3. The results of studies demonstrated the possibility of increasing AA of high explosive (HE) by adding both Al and AlH3. In the case of HMX (HE with negative oxygen balance (OB)), the AlH3 -containing compositions are inferior to the Al-containing ones in AA. The greatest increase in AA with the addition of AlH3 should be expected in the case of HE with positive OB (such as bis(trinitroethyl)nitramine), the compositions with AlH3 therewith should be superior to the Al-containing systems in AA.
About the authors
Mikhail N. Makhov
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: MNM17@yandex.ru
Candidate of Science in Chemistry, Leading Researcher
Russian Federation, 4, Kosygin St., Moscow, 119991References
- Chernyy, A. N., B. A. Naumov, M. V. Berezin, A. I. Levshenkov, and V. P. Sinditskiy. 2008. Izuchenie mekhanizma goreniya sostavov s ul’tradispersnym alyuminiem i s gidridom alyuminiya [Studies of mechanism of burning of formulations with ultradispersed aluminum and aluminum hydride]. Uspekhi v khimii i khimicheskoy tekhnologii (Mosk.) — Advances in Chemistry and Chemical Technology 22(4):45–49.
- Paushkin, Ya. M. 1978. Zhidkie i tverdye khimicheskie raketnye topliva [Liquid and solid chemical rocket fuels]. Moscow: Nauka. 192 p.
- Weiser, V., N. Eisenreich, A. Koleczko, and E. Roth. 2007. On the oxidation and combustion of AlH3 a potential fuel for rocket propellants and gas generations. Propell. Explo. Pyrot. 32(3):213–221. doi: 10.1002/prep.200700022.
- Lempert, D. A., G. N. Nechiporenko, A. V. Shastin, B. L. Korsunskiy, V. P. Lebedev, and T. I. Godovikova. 2003. Energeticheskie vozmozhnosti soedineniy 2,4,6(tris(trinitrometil))-1,3,5-triazina kak potentsial’nogo okislitelya smesevykh tverdykh raketnykh topliv [Energy capabilities of 2,4,6-(tris(trinitromethyl))-1,3,5-triazine compounds as a potential oxidizer of mixed solid rocket fuels]. Khim. Fizika 22(4):64–69.
- Seleznev, A. A., D. A. Kreknin, V. N. Lashkov, V. N. Lobanov, A. V. Fedorov, and N. A. Imkhovik. 1998. Performance criteria of explosive compositions. Khim. Fizika 17(1):97.
- Orlenko, L. P., ed. 2002. Fizika vzryva [Physics of explosion]. 3rd ed. Moscow: Fizmatlit. Vol. 1. 832 p.
- Zhukov, B. P., ed. 2000. Energeticheskie kondensirovannye sistemy [Energy condensed systems]. 3rd ed. Moscow: Yanus-K. 596 p.
- Makhov, M. N. 2005. Metod otsenki teploty vzryva alyuminizirovannykh VV [Method for evaluating the heat of explosion of aluminized HE]. Conference (International) “7th Kharitonov Topical Scientific Readings” Proceedings. Sarov: RFNC-VNIIEF. 53–58.
- Makhov, M. N., M. F. Gogulya, A. Yu. Dolgoborodov, M. A. Brazhnikov, V. I. Arkhipov, and V. I. Pepekin. 2004. Acceleration ability and heat of explosive decomposition of aluminized explosives. Combust. Explo. Shock Waves 40(4):458–466.
- Gogulya, M. F., M. N. Makhov, M. A. Brazhnikov, A. Yu. Dolgoborodov, V. I. Arkhipov, A. N. Zhigach, I. O. Leipunskii, and M. L. Kuskov. 2008. Explosive characteristics of aluminized HMX-based nanocomposites. Combust. Explo. Shock Waves 44(2):198–212.
- Makhov, M. N. 2011. Opredelenie teploty vzryva alyuminizirovannykh vzryvchatykh veshchestv [Determining the heat of explosion of aluminized high explosives]. Goren. Vzryv (Mosk.) — Combustion and Explosion 4:307–312.
- Makhov, M. N., and V. I. Arkhipov. 2008. Method for estimating the acceleration ability of aluminized high explosives. Russ. J. Phys. Chem. B 2(4):602–608. doi: 10.1134/S1990793108040167.
- Makhov, M. N. 2016. Metatel’naya sposobnost’ alyuminizirovannykh vzryvchatykh kompozitsiy [Acceleration ability of aluminized explosive compositions]. Goren. Vzryv (Mosk.) — Combustion and Explosion 9(1):144–149.
Supplementary files
