Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 14, No 1 (2021)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Effect of pressure on the autoignition delay of methane–ethylene–air mixtures

Troshin K.Y., Belyaev A.A., Arutyunov A.V., Shubin G.A., Nikitin A.V., Arutyunov V.S.

Abstract

The autoignition delays of stoichiometric methane–ethylene–air mixtures in the initial temperature range T0 = 760–1000 K and at a pressure P0 = 1 and 3 atm were determined experimentally by the method of autoignition in a static reactor and by kinetic modeling. It was found that increasing the pressure reduces the autoignition delay without changing the general nature of its dependence on the concentration of ethylene in the mixture. The effective activation energy of the autoignition delay of methane–ethylene–air mixtures within the measurement error weakly depends on pressure which is confirmed by kinetic calculations. The calculated values of the effective activation energy are in a good agreement with the experimental results.

Gorenie i vzryv. 2021;14(1):3-8
pages 3-8 views

Spherical diffusion flame of ethylene in the spaceflight experiment “Adamant”

Frolov S.M., Medvedev S.N., Frolov F.S.

Abstract

The joint spaceflight experiment Flame Design (Adamant) of NASA and Roscosmos is one of six experiments currently conducted at the International Space Station as part of the ACME (Advanced Combustion via Microgravity Experiments) project. The objective of the experiment is to study the fundamental mechanisms of control of soot formation in a spherical diffusion flame (SDF) formed around a porous sphere and the radiative extinction of the SDF under microgravity conditions. The objects of research are “direct” and “inverse” SDFs of gaseous ethylene in an oxygen atmosphere with additives of inert gases (nitrogen and carbon dioxide) at room temperature and subatmospheric and atmospheric pressures. The “direct” flame is a flame formed in an oxidizing atmosphere when fuel is supplied through the porous sphere. The “inverse” flame is a flame formed in a fuel atmosphere when an oxidizing agent is fed through the porous sphere. The experimental data are used to test one-dimensional, two-dimensional, and three-dimensional physical and mathematical models of the phenomenon, including reduced and detailed kinetic mechanisms of ethylene oxidation and combustion, soot formation, transport properties in a multicomponent gas mixture, as well as convective and conductive heat transfer and heat transfer by radiation. It is expected that the project will provide new knowledge about the physics and chemistry of diffusion flames which will help in solving the problems of combustion control and reduction of harmful combustion emissions. The article presents some current experimental and theoretical results of the project.

Gorenie i vzryv. 2021;14(1):9-21
pages 9-21 views

Mechanisms of compression wave generation and amplification in freely propagating flames

Kiverin A.D., Yakovenko I.S.

Abstract

The paper is devoted to the numerical and theoretical analysis of the mechanisms of generation and amplification of shock waves in the process of unconfined flame propagation. Two basic mechanisms of shock wave generation corresponding to the linear and nonlinear stages of hydrodynamic instability development are distinguished. The role of thermoacoustic instability in shock wave amplification and the establishment of the conditions for deflagration-to-detonation transition is demonstrated on the example of a highly chemically active mixture.

Gorenie i vzryv. 2021;14(1):22-28
pages 22-28 views

On the development of a ramjet implementing a cycle close to the cycle with detonative combustion

Migalin K.V., Sidenko K.A.

Abstract

The paper presents the results of work on creating a detonation ramjet based on the simplest form of a jet engine — a valveless pulsejet. The seductive simplicity of the design of such engines conceals the complexity of its operation process. The authors achieve cyclic combustion modes close to detonation in the pulsejet. The possible mechanism of initiating the detonative combustion is discussed.

Gorenie i vzryv. 2021;14(1):29-37
pages 29-37 views

Investigation of cycle-to-cycle variability at operation of pulsed detonation hydroramjet

Avdeev K.A., Aksenov V.S., Sadykov I.A., Frolov S.M., Frolov F.S., Shamshin I.O.

Abstract

The study is aimed at clarifying and eliminating the reasons of cycle-to-cycle variability during the operation of an innovative pulsed detonation hydroramjet (PDH) which reduces its thrust performance. An experimental sample of the PDH in the form of a pulsed detonation tube connected to an optically transparent water guide has been designed and manufactured. Experimental studies were performed with the vertical immersion of the sample in water. It was found that the cycle-to-cycle variability is associated with the overexpansion of gaseous detonation products in the detonation tube due to the inertia of the water column in the water guide. Gas overexpansion causes a reverse flow of the gas–water mixture which fills the water guide and penetrates the detonation tube, thus exerting a strong effect on the cyclic operation of the PDH. To eliminate the cycle-to-cycle variability, a new PDH model was developed, manufactured, and tested. The model is equipped with a rotary mechanical valve and operates on a propane–oxygen mixture. Its test fires showed that the use of the valve makes it possible to eliminate the cycle-to-cycle variability and to increase more than twice the average specific impulse: up to 550 s instead of 250 s at an operating frequency of 14 Hz.

Gorenie i vzryv. 2021;14(1):38-46
pages 38-46 views

Simulation of generation and propagation of shock/compression waves in bubbly media

Gubin S.A., Sverchkov A.M., Sumskoy S.I.

Abstract

A model and a numerical method are proposed for calculating the propagation of shock/compression waves in a bubbly medium in extended pipeline systems. The model considers the process in a one-dimensional approximation within the assumption of the mechanical, thermal, velocity, and phase equilibrium in the “vapor bubbles – liquid” system. The proposed model was implemented numerically using the Godunov’s approach. The model reproduces with good accuracy the available experimental data on the structure and parameters of circulating waves in a liquid and bubbly media. The possibility of generation of shock waves in pipelines with variable altitudes in the case of cavitation and subsequent collapse of cavitation zones is demonstrated. Contrary to the case of the conventional water hammer when the flow slows down due to valve closing, this effect can be considered as a localized water hammer; in the case of a “classic” water hammer, the flow is slowed down on closed valves. It has been shown by calculation that the collapse of the cavitation zones with the generation of pressure waves leads to an increase in the loads on the pipeline: the arising pressures are a factor of 1.5 higher as compared to the conventional water hammer.

Gorenie i vzryv. 2021;14(1):47-58
pages 47-58 views

Local velocities of hot-spot combustion front in HMX

Marshakov V.N., Melik-Gaykazov G.V.

Abstract

The mechanism of HMX combustion at pressures of 0.05–5.0 MPa is investigated. Itis shown that HMX burns in the focal (hot-spot) mode. In the article “HMX combustion mechanism” byV. N. Marshakov, V. G. Krupkin, and S. A. Rashkovsky (2020. Russ. J. Phys. Chem. B 14(6):934–939. doi: 10.1134/S1990793120060111), the scale of inhomogeneity of the combustion surface — the characteristic size of hot spots is determined. The dependence of the size of the hot spots on the average burning rate of the sample is obtained. In the present article, the temperature distributions in the combustion wave obtained using thermocouples are analyzed. The local burning rates are obtained from the analysis of temperature distributions in the condensed phase (close to the Mikchelson distribution). It is shown that the scatter of the burning rate values is explained by the registration of the velocity at different points of the transverse wave front. The values of the local burning rates exceeding the average burning rate are caused by the elevated initial temperature of the sample ahead of the flame front and the smaller values are explained by the curvature of the flame front and by the buckling mode of combustion.

Gorenie i vzryv. 2021;14(1):59-67
pages 59-67 views

Estimation of the influence of the water vapor concentration in a heated air on the characteristics of the operation process

Surikov E.V., Sharov M.S., Kolomentsev P.A., Alekseeva O.M., Fedorichev A.V., Zhesterev D.V.

Abstract

Presented are the results of experimental studies on estimating the influence of the water vapor concentration in the vitiated airflow preheated to 550 K, which may occur when using a hydrogen fire-heater, on the operation process in the combustor of the model facility with condensed energy-intensive material. A significant effect of the water vapor content on slagging of the heat-protective coating surfaces and heat exchange with the walls in the combustor is detected. A decrease in the combustion efficiency of the condensed energy-intensive material in the presence of 2–3 %(wt.) water vapor in the air flow under specified conditions was registered.

Gorenie i vzryv. 2021;14(1):68-76
pages 68-76 views

Determination of the explosion delay time during laser initiation of energy-intensive compounds

Alibaev A.F., Assovsky I.G., Dmitrienko D.B., Kuznetsov G.P., Melik-Gaykazov G.V.

Abstract

A method for recording light flashes during the initiation of an explosion in energy-intensive materials by a laser monopulse is proposed. Two methods of measuring the explosion delay are implemented. In the first, the photocell is installed on the back side of the test sample and luminocity is recorded in the infrared range (> 700 nm). On the register diagram, two separate peaks are clearly observed corresponding to the moment of generation (1064 nm) and the expansion of the explosion products. In the second, two photocells are used: the first one is located similarly and the second one is located on the side, in front of the sample. Luminocity is recorded in the range of 400–440 nm. The direct and scattered (explosion products) light fluxes emitted by the discharge of a pulsed pump lamp are measured. The delay is determined by the time shift of the signals of both photocells. The delay times for the selected chemical compound were 10 and 20 µs for monopulses with an energy of ∼50 and ∼ 60 mJ, respectively. The time of expansion of the explosion products is estimated in the interval from the beginning to the peak of the photocurrent. The specified value was ∼ 35 µs and did not depend on the initiation energy.

Gorenie i vzryv. 2021;14(1):77-82
pages 77-82 views

Prediction of acceleration ability of mixtures containing high explosives and aluminum hydride

Makhov M.N.

Abstract

From the results of calculations, it follows that the addition of aluminum (Al) and aluminum hydride (AlH3) significantly increases the potential energy content of HMX. This parameter is higher in the case of Al-containing mixtures. However, the compositions with AlH3 form a considerable number of moles of gaseous products in distinction to the mixtures with Al. The acceleration ability (AA) of aluminized compositions was measured with the use of the method known as M-40 (acceleration of a steel plate from the end of a charge inside the thick-walled steel shell). Furthermore, the AA values were calculated for the systems containing Al and AlH3. The results of studies demonstrated the possibility of increasing AA of high explosive (HE) by adding both Al and AlH3. In the case of HMX (HE with negative oxygen balance (OB)), the AlH3 -containing compositions are inferior to the Al-containing ones in AA. The greatest increase in AA with the addition of AlH3 should be expected in the case of HE with positive OB (such as bis(trinitroethyl)nitramine), the compositions with AlH3 therewith should be superior to the Al-containing systems in AA.

Gorenie i vzryv. 2021;14(1):83-88
pages 83-88 views

Modifying effect of rotational forces on the mechanism of the processes of SHS in metallothermal systems during the synthesis

Ksandopulo G.I.

Abstract

The mechanism of the modifying effect of rotational forces on the structure of the SHS-wave (SHS — self-propagating high-temperature synthesis) front in a cylindrical reactor with a compressed aluminothermic mixture rotating around a vertical axis is presented. It is shown that under the action of centrifugal forces, the particles of the reduced metal produced in the reaction zone of the SHS-wave move to the region ahead of the wave front and initiate new ignition sites in the fresh mixture, thus increasing the propagation velocity of the SHS-wave. This process opens up the possibilities for the synthesis of new nonequilibrium inorganic compounds with high temperature stability and a set of useful properties. As an example, the modifying effect of the addition of inorganic radicals (0.036% Al20B4O36) on the crystallization of the silumin melt with a significant decrease in the size of crystals in the cooled melt is demonstrated.

Gorenie i vzryv. 2021;14(1):89-95
pages 89-95 views

History. Commemorative dates. Events

pages 96-99 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».